A robust human norovirus replication model in zebrafish larvae
Autoři:
Jana Van Dycke aff001; Annelii Ny aff002; Nádia Conceição-Neto aff003; Jan Maes aff002; Myra Hosmillo aff004; Arno Cuvry aff001; Ian Goodfellow aff004; Tatiane C. Nogueira aff001; Erik Verbeken aff005; Jelle Matthijnssens aff003; Peter de Witte aff002; Johan Neyts aff001; Joana Rocha-Pereira aff001
Působiště autorů:
KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
aff001; KU Leuven–Department of Pharmaceutical and Pharmacological Sciences, Laboratory for Molecular Biodiscovery, Leuven, Belgium
aff002; KU Leuven–Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
aff003; University of Cambridge–Department of Pathology, Division of Virology, Addenbrooke's Hospital, Cambridge, United Kingdom
aff004; KU Leuven–Department of Imaging & Pathology, Translational Cell & Tissue Research, Leuven, Belgium
aff005; Global Virus Network (GVN), Centers of Excellence
aff006
Vyšlo v časopise:
A robust human norovirus replication model in zebrafish larvae. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1008009
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008009
Souhrn
Human noroviruses (HuNoVs) are the most common cause of foodborne illness, with a societal cost of $60 billion and 219,000 deaths/year. The lack of robust small animal models has significantly hindered the understanding of norovirus biology and the development of effective therapeutics. Here we report that HuNoV GI and GII replicate to high titers in zebrafish (Danio rerio) larvae; replication peaks at day 2 post infection and is detectable for at least 6 days. The virus (HuNoV GII.4) could be passaged from larva to larva two consecutive times. HuNoV is detected in cells of the hematopoietic lineage and the intestine, supporting the notion of a dual tropism. Antiviral treatment reduces HuNoV replication by >2 log10, showing that this model is suited for antiviral studies. Zebrafish larvae constitute a simple and robust replication model that will largely facilitate studies of HuNoV biology and the development of antiviral strategies.
Klíčová slova:
Biology and life sciences – Developmental biology – Life cycles – Larvae – Organisms – Eukaryota – Animals – Vertebrates – Fish – Osteichthyes – Viruses – RNA viruses – Caliciviruses – Norovirus – Microbiology – Virology – Viral replication – Medical microbiology – Microbial pathogens – Viral pathogens – Anatomy – Digestive system – Gastrointestinal tract – Physiology – Biological locomotion – Swimming – Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Zebrafish – Animal models – Extraction techniques – RNA extraction – Medicine and health sciences – Pathology and laboratory medicine – Pathogens
Zdroje
1. Bartsch SM, Lopman BA, Ozawa S, Hall AJ, Lee BY. Global Economic Burden of Norovirus Gastroenteritis. PloS one. 2016;11(4):e0151219. Epub 2016/04/27. doi: 10.1371/journal.pone.0151219 27115736; PubMed Central PMCID: PMC4846012.
2. Hemming M, Rasanen S, Huhti L, Paloniemi M, Salminen M, Vesikari T. Major reduction of rotavirus, but not norovirus, gastroenteritis in children seen in hospital after the introduction of RotaTeq vaccine into the National Immunization Programme in Finland. European journal of pediatrics. 2013;172(6):739–46. Epub 2013/01/31. doi: 10.1007/s00431-013-1945-3 23361964.
3. Bok K, Parra GI, Mitra T, Abente E, Shaver CK, Boon D, et al. Chimpanzees as an animal model for human norovirus infection and vaccine development. Proc Natl Acad Sci U S A. 2011;108(1):325–30. doi: 10.1073/pnas.1014577107 21173246; PubMed Central PMCID: PMC3017165.
4. Cheetham S, Souza M, Meulia T, Grimes S, Han MG, Saif LJ. Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J Virol. 2006;80(21):10372–81. doi: 10.1128/JVI.00809-06 17041218; PubMed Central PMCID: PMC1641747.
5. Souza M, Azevedo MS, Jung K, Cheetham S, Saif LJ. Pathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4-HS66 strain of human norovirus. J Virol. 2008;82(4):1777–86. doi: 10.1128/JVI.01347-07 18045944; PubMed Central PMCID: PMC2258707.
6. Taube S, Kolawole AO, Hohne M, Wilkinson JE, Handley SA, Perry JW, et al. A mouse model for human norovirus. MBio. 2013;4(4):e00450–13. Epub 2013/07/19. doi: 10.1128/mBio.00450-13 23860770; PubMed Central PMCID: PMC3735125.
7. Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, et al. Replication of human noroviruses in stem cell–derived human enteroids. Science. 2016;353(6306):1387–93. doi: 10.1126/science.aaf5211 27562956
8. Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science. 2014;346(6210):755–9. doi: 10.1126/science.1257147 25378626.
9. Jones MK, Grau KR, Costantini V, Kolawole AO, de Graaf M, Freiden P, et al. Human norovirus culture in B cells. Nat Protocols. 2015;10(12):1939–47. doi: 10.1038/nprot.2015.121 26513671
10. Goody MF, Sullivan C, Kim CH. Studying the immune response to human viral infections using zebrafish. Developmental and comparative immunology. 2014;46(1):84–95. Epub 2014/04/11. doi: 10.1016/j.dci.2014.03.025 24718256; PubMed Central PMCID: PMC4067600.
11. Kanther M, Rawls JF. Host-microbe interactions in the developing zebrafish. Current opinion in immunology. 2010;22(1):10–9. doi: 10.1016/j.coi.2010.01.006 20153622; PubMed Central PMCID: PMC3030977.
12. Lewis KL, Del Cid N, Traver D. Perspectives on antigen presenting cells in zebrafish. Developmental and comparative immunology. 2014;46(1):63–73. doi: 10.1016/j.dci.2014.03.010 24685511; PubMed Central PMCID: PMC4158852.
13. Burgos JS, Ripoll-Gomez J, Alfaro JM, Sastre I, Valdivieso F. Zebrafish as a new model for herpes simplex virus type 1 infection. Zebrafish. 2008;5(4):323–33. Epub 2009/01/13. doi: 10.1089/zeb.2008.0552 19133831.
14. Gabor KA, Goody MF, Mowel WK, Breitbach ME, Gratacap RL, Witten PE, et al. Influenza A virus infection in zebrafish recapitulates mammalian infection and sensitivity to anti-influenza drug treatment. Dis Model Mech. 2014;7(11):1227–37. Epub 2014/09/06. doi: 10.1242/dmm.014746 25190709; PubMed Central PMCID: PMC4213727.
15. Palha N, Guivel-Benhassine F, Briolat V, Lutfalla G, Sourisseau M, Ellett F, et al. Real-time whole-body visualization of Chikungunya Virus infection and host interferon response in zebrafish. PLoS Pathog. 2013;9(9):e1003619. Epub 2013/09/17. doi: 10.1371/journal.ppat.1003619 24039582; PubMed Central PMCID: PMC3764224.
16. Wallace KN, Akhter S, Smith EM, Lorent K, Pack M. Intestinal growth and differentiation in zebrafish. Mechanisms of Development. 2005;122(2):157–73. doi: 10.1016/j.mod.2004.10.009 15652704
17. Gerbe F, Legraverend C, Jay P. The intestinal epithelium tuft cells: specification and function. Cellular and molecular life sciences: CMLS. 2012;69(17):2907–17. Epub 2012/04/25. doi: 10.1007/s00018-012-0984-7 22527717; PubMed Central PMCID: PMC3417095.
18. Karst SM, Wobus CE, Lay M, Davidson J, Virgin HW. STAT1-dependent innate immunity to a Norwalk-like virus. Science. 2003;299(5612):1575–8. doi: 10.1126/science.1077905 12624267.
19. Arthur SE, Sorgeloos F, Hosmillo M, Goodfellow I. Epigenetic suppression of interferon lambda receptor expression leads to enhanced HuNoV replication in vitro. bioRxiv. 2019:523282. doi: 10.1101/523282
20. Kolawole AO, Rocha-Pereira J, Elftman MD, Neyts J, Wobus CE. Inhibition of human norovirus by a viral polymerase inhibitor in the B cell culture system and in the mouse model. Antiviral Res. 2016;132:46–9. Epub 2016/05/24. doi: 10.1016/j.antiviral.2016.05.011 27210811; PubMed Central PMCID: PMC4980194.
21. Rocha-Pereira J, Jochmans D, Debing Y, Verbeken E, Nascimento MS, Neyts J. The viral polymerase inhibitor 2'-C-methylcytidine inhibits Norwalk virus replication and protects against norovirus-induced diarrhea and mortality in a mouse model. J Virol. 2013;87(21):11798–805. doi: 10.1128/JVI.02064-13 23986582; PubMed Central PMCID: PMC3807313.
22. Legoff J, Resche-Rigon M, Bouquet J, Robin M, Naccache SN, Mercier-Delarue S, et al. The eukaryotic gut virome in hematopoietic stem cell transplantation: new clues in enteric graft-versus-host disease. Nature medicine. 2017;23(9):1080–5. Epub 2017/08/02. doi: 10.1038/nm.4380 28759053.
23. Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, Tenge VR, et al. Replication of human noroviruses in stem cell-derived human enteroids. Science. 2016;353(6306):1387–93. Epub 2016/08/27. doi: 10.1126/science.aaf5211 27562956; PubMed Central PMCID: PMC5305121.
24. Haga K, Fujimoto A, Takai-Todaka R, Miki M, Doan YH, Murakami K, et al. Functional receptor molecules CD300lf and CD300ld within the CD300 family enable murine noroviruses to infect cells. Proc Natl Acad Sci U S A. 2016;113(41):E6248–e55. Epub 2016/09/30. doi: 10.1073/pnas.1605575113 27681626; PubMed Central PMCID: PMC5068309.
25. Murayama E, Kissa K, Zapata A, Mordelet E, Briolat V, Lin HF, et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. Immunity. 2006;25(6):963–75. Epub 2006/12/13. doi: 10.1016/j.immuni.2006.10.015 17157041.
26. Karandikar UC, Crawford SE, Ajami NJ, Murakami K, Kou B, Ettayebi K, et al. Detection of human norovirus in intestinal biopsies from immunocompromised transplant patients. J Gen Virol. 2016;97(9):2291–300. Epub 2016/07/15. doi: 10.1099/jgv.0.000545 27412790; PubMed Central PMCID: PMC5756488.
27. Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503. Epub 2013/04/19. doi: 10.1038/nature12111 23594743; PubMed Central PMCID: PMC3703927.
28. Hall CJ, Flores MV, Oehlers SH, Sanderson LE, Lam EY, Crosier KE, et al. Infection-responsive expansion of the hematopoietic stem and progenitor cell compartment in zebrafish is dependent upon inducible nitric oxide. Cell stem cell. 2012;10(2):198–209. Epub 2012/02/07. doi: 10.1016/j.stem.2012.01.007 22305569.
29. Mostowy S, Boucontet L, Mazon Moya MJ, Sirianni A, Boudinot P, Hollinshead M, et al. The zebrafish as a new model for the in vivo study of Shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS Pathog. 2013;9(9):e1003588. Epub 2013/09/17. doi: 10.1371/journal.ppat.1003588 24039575; PubMed Central PMCID: PMC3764221.
30. Taube S, Kolawole AO, Höhne M, Wilkinson JE, Handley SA, Perry JW, et al. A mouse model for human norovirus. MBio. 2013;4(4). doi: 10.1128/mBio.00450-13 23860770; PubMed Central PMCID: PMC3735125.
31. Costantini V, Morantz EK, Browne H, Ettayebi K, Zeng XL, Atmar RL, et al. Human Norovirus Replication in Human Intestinal Enteroids as Model to Evaluate Virus Inactivation. Emerg Infect Dis. 2018;24(8):1453–64. Epub 2018/07/18. doi: 10.3201/eid2408.180126 30014841; PubMed Central PMCID: PMC6056096.
32. Miyares RL, de Rezende VB, Farber SA. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis Model Mech. 2014;7(7):915–27. Epub 2014/05/09. doi: 10.1242/dmm.015800 24812437; PubMed Central PMCID: PMC4073280.
33. Cornet C, Di Donato V, Terriente J. Combining Zebrafish and CRISPR/Cas9: Toward a More Efficient Drug Discovery Pipeline. Frontiers in pharmacology. 2018;9:703. Epub 2018/07/19. doi: 10.3389/fphar.2018.00703 30018554; PubMed Central PMCID: PMC6037853.
34. Siekierska A, Stamberger H, Deconinck T, Oprescu SN, Partoens M, Zhang Y, et al. Biallelic VARS variants cause developmental encephalopathy with microcephaly that is recapitulated in vars knockout zebrafish. Nature communications. 2019;10(1):708. Epub 2019/02/14. doi: 10.1038/s41467-018-07953-w 30755616; PubMed Central PMCID: PMC6372652.
35. Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature. 2013;496(7446):494–7. Epub 2013/04/19. doi: 10.1038/nature11992 23594742; PubMed Central PMCID: PMC3743023.
36. MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nature reviews Drug discovery. 2015;14(10):721–31. Epub 2015/09/12. doi: 10.1038/nrd4627 26361349.
37. Torraca V, Mostowy S. Zebrafish Infection: From Pathogenesis to Cell Biology. Trends in cell biology. 2018;28(2):143–56. Epub 2017/11/28. doi: 10.1016/j.tcb.2017.10.002 29173800; PubMed Central PMCID: PMC5777827.
38. Giusti A, Nguyen XB, Kislyuk S, Mignot M, Ranieri C, Nicolai J, et al. Safety Assessment of Compounds after In Vitro Metabolic Conversion Using Zebrafish Eleuthero Embryos. International journal of molecular sciences. 2019;20(7). Epub 2019/04/10. doi: 10.3390/ijms20071712 30959884; PubMed Central PMCID: PMC6479637.
39. Kroneman A, Vennema H, Deforche K, v d Avoort H, Penaranda S, Oberste MS, et al. An automated genotyping tool for enteroviruses and noroviruses. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2011;51(2):121–5. Epub 2011/04/26. doi: 10.1016/j.jcv.2011.03.006 21514213.
40. Phelan PE, Pressley ME, Witten PE, Mellon MT, Blake S, Kim CH. Characterization of snakehead rhabdovirus infection in zebrafish (Danio rerio). J Virol. 2005;79(3):1842–52. Epub 2005/01/15. doi: 10.1128/JVI.79.3.1842-1852.2005 15650208; PubMed Central PMCID: PMC544118.
41. Briolat V, Jouneau L, Carvalho R, Palha N, Langevin C, Herbomel P, et al. Contrasted innate responses to two viruses in zebrafish: insights into the ancestral repertoire of vertebrate IFN-stimulated genes. J Immunol. 2014;192(9):4328–41. Epub 2014/04/01. doi: 10.4049/jimmunol.1302611 24683187.
42. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001;25(4):402–8. Epub 2002/02/16. doi: 10.1006/meth.2001.1262 11846609.
43. Conceicao-Neto N, Zeller M, Lefrere H, De Bruyn P, Beller L, Deboutte W, et al. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Scientific reports. 2015;5:16532. Epub 2015/11/13. doi: 10.1038/srep16532 26559140; PubMed Central PMCID: PMC4642273.
44. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England). 2014;30(15):2114–20. Epub 2014/04/04. doi: 10.1093/bioinformatics/btu170 24695404; PubMed Central PMCID: PMC4103590.
45. Nurk S, Bankevich A, Antipov D, Gurevich AA, Korobeynikov A, Lapidus A, et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J Comput Biol. 2013;20(10):714–37. doi: 10.1089/cmb.2013.0084 24093227; PubMed Central PMCID: PMC3791033.
46. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Prepr arXiv 2013 [updated 26 May 2013]. Available from: http://arxiv.org/abs/1303.3997.
47. Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L, Cardle L, et al. Using Tablet for visual exploration of second-generation sequencing data. Briefings in bioinformatics. 2013;14(2):193–202. Epub 2012/03/27. doi: 10.1093/bib/bbs012 22445902.
48. Sabaliauskas NA, Foutz CA, Mest JR, Budgeon LR, Sidor AT, Gershenson JA, et al. High-throughput zebrafish histology. Methods (San Diego, Calif). 2006;39(3):246–54. Epub 2006/07/28. doi: 10.1016/j.ymeth.2006.03.001 16870470.
49. Stals A, Baert L, Botteldoorn N, Werbrouck H, Herman L, Uyttendaele M, et al. Multiplex real-time RT-PCR for simultaneous detection of GI/GII noroviruses and murine norovirus 1. J Virol Methods. 2009;161(2):247–53. Epub 2009/07/01. doi: 10.1016/j.jviromet.2009.06.019 19563828.
50. Baert L, Wobus CE, Van Coillie E, Thackray LB, Debevere J, Uyttendaele M. Detection of murine norovirus 1 by using plaque assay, transfection assay, and real-time reverse transcription-PCR before and after heat exposure. Appl Environ Microbiol. 2008;74(2):543–6. doi: 10.1128/AEM.01039-07 18024676; PubMed Central PMCID: PMC2223245.
51. Kageyama T, Kojima S, Shinohara M, Uchida K, Fukushi S, Hoshino FB, et al. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol. 2003;41(4):1548–57. Epub 2003/04/19. doi: 10.1128/JCM.41.4.1548-1557.2003 12682144; PubMed Central PMCID: PMC153860.
52. Kojima S, Kageyama T, Fukushi S, Hoshino FB, Shinohara M, Uchida K, et al. Genogroup-specific PCR primers for detection of Norwalk-like viruses. J Virol Methods. 2002;100(1–2):107–14. Epub 2001/12/18. 11742657.
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 9
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Is reliance on an inaccurate genome sequence sabotaging your experiments?
- The molecular clock of Mycobacterium tuberculosis
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11