Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge
Autoři:
Xiaoyan Zheng aff001; Jennifer D. Oduro aff001; Julia D. Boehme aff002; Lisa Borkner aff001; Thomas Ebensen aff001; Ulrike Heise aff004; Marcus Gereke aff002; Marina C. Pils aff004; Astrid Krmpotic aff005; Carlos A. Guzmán aff001; Dunja Bruder aff002; Luka Čičin-Šain aff001
Působiště autorů:
Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
aff001; Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
aff002; Infection Immunology Group, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto von-Guericke University, Magdeburg, Germany
aff003; Mouse Pathology Unit, Helmholtz Centre for Infection Research, Braunschweig, Germany
aff004; Department of Histology and Embryology, School of Medicine, University of Rijeka, Rijeka Croatia
aff005; German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, Germany
aff006
Vyšlo v časopise:
Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1008036
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008036
Souhrn
Cytomegalovirus (CMV) is a ubiquitous β-herpesvirus that establishes life-long latent infection in a high percentage of the population worldwide. CMV induces the strongest and most durable CD8+ T cell response known in human clinical medicine. Due to its unique properties, the virus represents a promising candidate vaccine vector for the induction of persistent cellular immunity. To take advantage of this, we constructed a recombinant murine CMV (MCMV) expressing an MHC-I restricted epitope from influenza A virus (IAV) H1N1 within the immediate early 2 (ie2) gene. Only mice that were immunized intranasally (i.n.) were capable of controlling IAV infection, despite the greater potency of the intraperitoneally (i.p.) vaccination in inducing a systemic IAV-specific CD8+ T cell response. The protective capacity of the i.n. immunization was associated with its ability to induce IAV-specific tissue-resident memory CD8+ T (CD8TRM) cells in the lungs. Our data demonstrate that the protective effect exerted by the i.n. immunization was critically mediated by antigen-specific CD8+ T cells. CD8TRM cells promoted the induction of IFNγ and chemokines that facilitate the recruitment of antigen-specific CD8+ T cells to the lungs. Overall, our results showed that locally applied MCMV vectors could induce mucosal immunity at sites of entry, providing superior immune protection against respiratory infections.
Klíčová slova:
Biology and life sciences – Cell biology – Cellular types – Animal cells – Blood cells – White blood cells – T cells – Cytotoxic T cells – Immune cells – Cell motility – Chemotaxis – Chemokines – Antibodies – Organisms – Viruses – RNA viruses – Orthomyxoviruses – Influenza viruses – Influenza A virus – Microbiology – Medical microbiology – Microbial pathogens – Viral pathogens – Physiology – Spleen – Biochemistry – Proteins – Immune system proteins – Medicine and health sciences – Immunology – Immune response – Pathology and laboratory medicine – Pathogens – Immune physiology – Research and analysis methods – Spectrum analysis techniques – Spectrophotometry – Cytophotometry – Flow cytometry
Zdroje
1. WHO. Influenza (Seasonal) Fact sheet N°211". who.int. 2014; http://www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal).
2. Barria M.I., et al., Localized mucosal response to intranasal live attenuated influenza vaccine in adults. J Infect Dis, 2013. 207(1): p. 115–24. doi: 10.1093/infdis/jis641 23087433
3. Ilyushina N.A., et al., Live attenuated and inactivated influenza vaccines in children. J Infect Dis, 2015. 211(3): p. 352–60. doi: 10.1093/infdis/jiu458 25165161
4. Eichelberger M., et al., Clearance of influenza virus respiratory infection in mice lacking class I major histocompatibility complex-restricted CD8+ T cells. J Exp Med, 1991. 174(4): p. 875–80. doi: 10.1084/jem.174.4.875 1919440
5. Bender B.S., et al., Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med, 1992. 175(4): p. 1143–5. doi: 10.1084/jem.175.4.1143 1552285
6. Yager E.J., et al., Age-associated decline in T cell repertoire diversity leads to holes in the repertoire and impaired immunity to influenza virus. J Exp Med, 2008. 205(3): p. 711–23. doi: 10.1084/jem.20071140 18332179
7. Baumgarth N. and Kelso A., In vivo blockade of gamma interferon affects the influenza virus-induced humoral and the local cellular immune response in lung tissue. J Virol, 1996. 70(7): p. 4411–8. 8676464
8. Topham D.J., Tripp R.A., and Doherty P.C., CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J Immunol, 1997. 159(11): p. 5197–200. 9548456
9. Sylwester A.W., et al., Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med, 2005. 202(5): p. 673–85. doi: 10.1084/jem.20050882 16147978
10. Holtappels R., et al., Enrichment of immediate-early 1 (m123/pp89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol, 2000. 74(24): p. 11495–503. doi: 10.1128/jvi.74.24.11495-11503.2000 11090146
11. Karrer U., et al., Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol, 2003. 170(4): p. 2022–9. doi: 10.4049/jimmunol.170.4.2022 12574372
12. Munks M.W., et al., Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol, 2006. 177(1): p. 450–8. doi: 10.4049/jimmunol.177.1.450 16785542
13. Podlech J., et al., Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol, 2000. 74(16): p. 7496–507. doi: 10.1128/jvi.74.16.7496-7507.2000 10906203
14. Karrer U., et al., Expansion of protective CD8+ T-cell responses driven by recombinant cytomegaloviruses. J Virol, 2004. 78(5): p. 2255–64. doi: 10.1128/JVI.78.5.2255-2264.2004 14963122
15. Tsuda Y., et al., A replicating cytomegalovirus-based vaccine encoding a single Ebola virus nucleoprotein CTL epitope confers protection against Ebola virus. PLoS Negl Trop Dis, 2011. 5(8): p. e1275. doi: 10.1371/journal.pntd.0001275 21858240
16. Hansen S.G., et al., Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature, 2011. 473(7348): p. 523–7. doi: 10.1038/nature10003 21562493
17. Dekhtiarenko I., et al., The context of gene expression defines the immunodominance hierarchy of cytomegalovirus antigens. J Immunol, 2013. 190(7): p. 3399–409. doi: 10.4049/jimmunol.1203173 23460738
18. Borkner L., et al., Immune Protection by a Cytomegalovirus Vaccine Vector Expressing a Single Low-Avidity Epitope. J Immunol, 2017. 199(5): p. 1737–1747. doi: 10.4049/jimmunol.1602115 28768725
19. Beverley P.C., et al., A novel murine cytomegalovirus vaccine vector protects against Mycobacterium tuberculosis. J Immunol, 2014. 193(5): p. 2306–16. doi: 10.4049/jimmunol.1302523 25070842
20. Klyushnenkova E.N., et al., A cytomegalovirus-based vaccine expressing a single tumor-specific CD8+ T-cell epitope delays tumor growth in a murine model of prostate cancer. J Immunother, 2012. 35(5): p. 390–9. doi: 10.1097/CJI.0b013e3182585d50 22576344
21. Dekhtiarenko I., et al., Peptide Processing Is Critical for T-Cell Memory Inflation and May Be Optimized to Improve Immune Protection by CMV-Based Vaccine Vectors. PLoS Pathog, 2016. 12(12): p. e1006072. doi: 10.1371/journal.ppat.1006072 27977791
22. Marzi A., et al., Cytomegalovirus-based vaccine expressing Ebola virus glycoprotein protects nonhuman primates from Ebola virus infection. Sci Rep, 2016. 6: p. 21674. doi: 10.1038/srep21674 26876974
23. Hansen S.G., et al., Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science, 2013. 340(6135): p. 1237874. doi: 10.1126/science.1237874 23704576
24. Erkes D.A., Wilski N.A., and Snyder C.M., Intratumoral infection by CMV may change the tumor environment by directly interacting with tumor-associated macrophages to promote cancer immunity. Hum Vaccin Immunother, 2017. 13(8): p. 1778–1785. doi: 10.1080/21645515.2017.1331795 28604162
25. Qiu Z., et al., Cytomegalovirus-Based Vaccine Expressing a Modified Tumor Antigen Induces Potent Tumor-Specific CD8(+) T-cell Response and Protects Mice from Melanoma. Cancer Immunol Res, 2015. 3(5): p. 536–46. doi: 10.1158/2326-6066.CIR-14-0044 25633711
26. Gebhardt T., et al., Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol, 2009. 10(5): p. 524–30. doi: 10.1038/ni.1718 19305395
27. Wakim L.M., et al., The molecular signature of tissue resident memory CD8 T cells isolated from the brain. J Immunol, 2012. 189(7): p. 3462–71. doi: 10.4049/jimmunol.1201305 22922816
28. Schenkel J.M., et al., Sensing and alarm function of resident memory CD8(+) T cells. Nat Immunol, 2013. 14(5): p. 509–13. doi: 10.1038/ni.2568 23542740
29. Morabito K.M., et al., Intranasal administration of RSV antigen-expressing MCMV elicits robust tissue-resident effector and effector memory CD8+ T cells in the lung. Mucosal Immunol, 2017. 10(2): p. 545–554. doi: 10.1038/mi.2016.48 27220815
30. Mackay L.K., et al., The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol, 2013. 14(12): p. 1294–301. doi: 10.1038/ni.2744 24162776
31. Jiang X., et al., Skin infection generates non-migratory memory CD8+ T(RM) cells providing global skin immunity. Nature, 2012. 483(7388): p. 227–31. doi: 10.1038/nature10851 22388819
32. Lapuente D., et al., IL-1beta as mucosal vaccine adjuvant: the specific induction of tissue-resident memory T cells improves the heterosubtypic immunity against influenza A viruses. Mucosal Immunol, 2018. 11(4): p. 1265–1278. doi: 10.1038/s41385-018-0017-4 29545648
33. Smith C.J., et al., Murine CMV Infection Induces the Continuous Production of Mucosal Resident T Cells. Cell Rep, 2015. 13(6): p. 1137–1148. doi: 10.1016/j.celrep.2015.09.076 26526996
34. Baumann N.S., et al., Tissue maintenance of CMV-specific inflationary memory T cells by IL-15. PLoS Pathog, 2018. 14(4): p. e1006993. doi: 10.1371/journal.ppat.1006993 29652930
35. Oduro J.D., et al., Murine cytomegalovirus (CMV) infection via the intranasal route offers a robust model of immunity upon mucosal CMV infection. J Gen Virol, 2016. 97(1): p. 185–95. doi: 10.1099/jgv.0.000339 26555192
36. McMaster S.R., et al., Airway-Resident Memory CD8 T Cells Provide Antigen-Specific Protection against Respiratory Virus Challenge through Rapid IFN-gamma Production. J Immunol, 2015. 195(1): p. 203–9. doi: 10.4049/jimmunol.1402975 26026054
37. Hombrink P., et al., Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat Immunol, 2016. 17(12): p. 1467–1478. doi: 10.1038/ni.3589 27776108
38. Tamura M., et al., Definition of amino acid residues on the epitope responsible for recognition by influenza A virus H1-specific, H2-specific, and H1- and H2-cross-reactive murine cytotoxic T-lymphocyte clones. J Virol, 1998. 72(11): p. 9404–6. 9765498
39. Flynn K.J., et al., Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity, 1998. 8(6): p. 683–91. 9655482
40. Slutter B., et al., Lung airway-surveilling CXCR3(hi) memory CD8(+) T cells are critical for protection against influenza A virus. Immunity, 2013. 39(5): p. 939–48. doi: 10.1016/j.immuni.2013.09.013 24238342
41. Samuel C.E., Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology, 1991. 183(1): p. 1–11. doi: 10.1016/0042-6822(91)90112-o 1711253
42. Cheuk S., et al., CD49a Expression Defines Tissue-Resident CD8(+) T Cells Poised for Cytotoxic Function in Human Skin. Immunity, 2017. 46(2): p. 287–300. doi: 10.1016/j.immuni.2017.01.009 28214226
43. Topham D.J. and Reilly E.C., Tissue-Resident Memory CD8(+) T Cells: From Phenotype to Function. Front Immunol, 2018. 9: p. 515. doi: 10.3389/fimmu.2018.00515 29632527
44. Wells M.A., Albrecht P., and Ennis F.A., Recovery from a viral respiratory infection. I. Influenza pneumonia in normal and T-deficient mice. J Immunol, 1981. 126(3): p. 1036–41. 6970211
45. Pizzolla A., et al., Resident memory CD8+ T cells in the upper respiratory tract prevent pulmonary influenza virus infection. Sci Immunol, 2017. 2(12).
46. Zens K.D., Chen J.K., and Farber D.L., Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight, 2016. 1(10).
47. Morabito K.M., et al., Memory Inflation Drives Tissue-Resident Memory CD8(+) T Cell Maintenance in the Lung After Intranasal Vaccination With Murine Cytomegalovirus. Front Immunol, 2018. 9: p. 1861. doi: 10.3389/fimmu.2018.01861 30154789
48. Ariotti S., et al., T cell memory. Skin-resident memory CD8(+) T cells trigger a state of tissue-wide pathogen alert. Science, 2014. 346(6205): p. 101–5. doi: 10.1126/science.1254803 25278612
49. Park S.L., et al., Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat Immunol, 2018. 19(2): p. 183–191. doi: 10.1038/s41590-017-0027-5 29311695
50. Sierro S., Rothkopf R., and Klenerman P., Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection. Eur J Immunol, 2005. 35(4): p. 1113–23. doi: 10.1002/eji.200425534 15756645
51. Snyder C.M., et al., Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells. Immunity, 2008. 29(4): p. 650–9. doi: 10.1016/j.immuni.2008.07.017 18957267
52. Henson S.M. and Akbar A.N., KLRG1—more than a marker for T cell senescence. Age (Dordr), 2009. 31(4): p. 285–91.
53. Osborn J.F., et al., Enzymatic synthesis of core 2 O-glycans governs the tissue-trafficking potential of memory CD8(+) T cells. Sci Immunol, 2017. 2(16).
54. Gerlach C., et al., The Chemokine Receptor CX3CR1 Defines Three Antigen-Experienced CD8 T Cell Subsets with Distinct Roles in Immune Surveillance and Homeostasis. Immunity, 2016. 45(6): p. 1270–1284. doi: 10.1016/j.immuni.2016.10.018 27939671
55. Thom J.T., et al., The Salivary Gland Acts as a Sink for Tissue-Resident Memory CD8(+) T Cells, Facilitating Protection from Local Cytomegalovirus Infection. Cell Rep, 2015. 13(6): p. 1125–36. doi: 10.1016/j.celrep.2015.09.082 26526997
56. Beura L.K., et al., Intravital mucosal imaging of CD8(+) resident memory T cells shows tissue-autonomous recall responses that amplify secondary memory. Nat Immunol, 2018. 19(2): p. 173–182. doi: 10.1038/s41590-017-0029-3 29311694
57. Yoshizaki K., et al., Interleukin 6 and expression of its receptor on epidermal keratinocytes. Cytokine, 1990. 2(5): p. 381–7. 2129417
58. Scheller J., et al., The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta, 2011. 1813(5): p. 878–88. doi: 10.1016/j.bbamcr.2011.01.034 21296109
59. Murphy E.A., et al., Effect of IL-6 deficiency on susceptibility to HSV-1 respiratory infection and intrinsic macrophage antiviral resistance. J Interferon Cytokine Res, 2008. 28(10): p. 589–95. doi: 10.1089/jir.2007.0103 18778200
60. Strestik B.D., et al., The role of IL-5, IL-6 and IL-10 in primary and vaccine-primed immune responses to infection with Friend retrovirus (Murine leukaemia virus). J Gen Virol, 2001. 82(Pt 6): p. 1349–54. doi: 10.1099/0022-1317-82-6-1349 11369878
61. Harker J.A., et al., Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science, 2011. 334(6057): p. 825–9. doi: 10.1126/science.1208421 21960530
62. Lee N., et al., Hypercytokinemia and hyperactivation of phospho-p38 mitogen-activated protein kinase in severe human influenza A virus infection. Clin Infect Dis, 2007. 45(6): p. 723–31. doi: 10.1086/520981 17712756
63. Mahler Convenor M., et al., FELASA recommendations for the health monitoring of mouse, rat, hamster, guinea pig and rabbit colonies in breeding and experimental units. Lab Anim, 2014. 48(3): p. 178–192. doi: 10.1177/0023677213516312 24496575
64. Reddehase M.J., Podlech J., and Grzimek N.K., Mouse models of cytomegalovirus latency: overview. J Clin Virol, 2002. 25 Suppl 2: p. S23–36.
65. Jordan S., et al., Virus progeny of murine cytomegalovirus bacterial artificial chromosome pSM3fr show reduced growth in salivary Glands due to a fixed mutation of MCK-2. J Virol, 2011. 85(19): p. 10346–53. doi: 10.1128/JVI.00545-11 21813614
66. Dag F., et al., Reversible silencing of cytomegalovirus genomes by type I interferon governs virus latency. PLoS Pathog, 2014. 10(2): p. e1003962. doi: 10.1371/journal.ppat.1003962 24586165
67. Cicin-Sain L., Podlech J., Messerle M., Reddehase M. J., and Koszinowski U. H., Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. Journal of Virology, 2005. 79: p. 9492–9502. doi: 10.1128/JVI.79.15.9492-9502.2005 16014912
68. Tischer B.K., Smith G.A., and Osterrieder N., En passant mutagenesis: a two step markerless red recombination system. Methods Mol Biol, 2010. 634: p. 421–30. doi: 10.1007/978-1-60761-652-8_30 20677001
69. Dekhtiarenko I., Cicin-Sain L., and Messerle M., Use of recombinant approaches to construct human cytomegalovirus mutants. Methods Mol Biol, 2014. 1119: p. 59–79. doi: 10.1007/978-1-62703-788-4_5 24639218
70. Blazejewska P., et al., Pathogenicity of different PR8 influenza A virus variants in mice is determined by both viral and host factors. Virology, 2011. 412(1): p. 36–45. doi: 10.1016/j.virol.2010.12.047 21256531
71. Salem M.L. and Hossain M.S., In vivo acute depletion of CD8(+) T cells before murine cytomegalovirus infection upregulated innate antiviral activity of natural killer cells. Int J Immunopharmacol, 2000. 22(9): p. 707–18. doi: 10.1016/s0192-0561(00)00033-3 10884591
72. Kruisbeek A.M., In vivo depletion of CD4- and CD8-specific T cells. Curr Protoc Immunol, 2001. Chapter 4: p. Unit 4 1.
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 9
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Is reliance on an inaccurate genome sequence sabotaging your experiments?
- The molecular clock of Mycobacterium tuberculosis
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11