The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing
Autoři:
Ethel Bayer-Santos aff001; William Cenens aff001; Bruno Yasui Matsuyama aff001; Gabriel Umaji Oka aff001; Giancarlo Di Sessa aff001; Izabel Del Valle Mininel aff001; Tiago Lubiana Alves aff001; Chuck Shaker Farah aff001
Působiště autorů:
Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
aff001; Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
aff002
Vyšlo v časopise:
The opportunistic pathogen Stenotrophomonas maltophilia utilizes a type IV secretion system for interbacterial killing. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1007651
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1007651
Souhrn
Bacterial type IV secretion systems (T4SS) are a highly diversified but evolutionarily related family of macromolecule transporters that can secrete proteins and DNA into the extracellular medium or into target cells. It was recently shown that a subtype of T4SS harboured by the plant pathogen Xanthomonas citri transfers toxins into target cells. Here, we show that a similar T4SS from the multi-drug-resistant opportunistic pathogen Stenotrophomonas maltophilia is proficient in killing competitor bacterial species. T4SS-dependent duelling between S. maltophilia and X. citri was observed by time-lapse fluorescence microscopy. A bioinformatic search of the S. maltophilia K279a genome for proteins containing a C-terminal domain conserved in X. citri T4SS effectors (XVIPCD) identified twelve putative effectors and their cognate immunity proteins. We selected a putative S. maltophilia effector with unknown function (Smlt3024) for further characterization and confirmed that it is indeed secreted in a T4SS-dependent manner. Expression of Smlt3024 in the periplasm of E. coli or its contact-dependent delivery via T4SS into E. coli by X. citri resulted in reduced growth rates, which could be counteracted by expression of its cognate inhibitor Smlt3025 in the target cell. Furthermore, expression of the VirD4 coupling protein of X. citri can restore the function of S. maltophilia ΔvirD4, demonstrating that effectors from one species can be recognized for transfer by T4SSs from another species. Interestingly, Smlt3024 is homologous to the N-terminal domain of large Ca2+-binding RTX proteins and the crystal structure of Smlt3025 revealed a topology similar to the iron-regulated protein FrpD from Neisseria meningitidis which has been shown to interact with the RTX protein FrpC. This work expands our current knowledge about the function of bacteria-killing T4SSs and increases the panel of effectors known to be involved in T4SS-mediated interbacterial competition, which possibly contribute to the establishment of S. maltophilia in clinical and environmental settings.
Klíčová slova:
Biology and life sciences – Microbiology – Medical microbiology – Microbial pathogens – Bacterial pathogens – Stenotrophomonas maltophilia – Bacteriology – Bacterial physiology – Secretion systems – Microbial physiology – Physiology – Physiological processes – Tissue repair – Lysis (medicine) – Biochemistry – Proteins – Protein domains – Immune system proteins – Immunity – Cell biology – Cellular structures and organelles – Cell membranes – Membrane proteins – Outer membrane proteins – Medicine and health sciences – Pathology and laboratory medicine – Pathogens – Virulence factors – Immunology – Physical sciences – Physics – Condensed matter physics – Solid state physics – Crystallography – Crystal structure
Zdroje
1. Garcia-Bayona L, Comstock LE (2018). Bacterial antagonism in host-associated microbial communities. Science 361.
2. Aoki SK, Pamma R, Hernday AD, Bickham JE, Braaten BA, Low DA (2005). Contact-dependent inhibition of growth in Escherichia coli. Science 309: 1245–8. doi: 10.1126/science.1115109 16109881
3. Aoki SK, Diner EJ, de Roodenbeke CT, Burgess BR, Poole SJ, Braaten BA, et al. (2010). A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468: 439–42. doi: 10.1038/nature09490 21085179
4. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007). Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A 104: 15508–13. doi: 10.1073/pnas.0706532104 17873062
5. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, et al. (2006). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103: 1528–33. doi: 10.1073/pnas.0510322103 16432199
6. Whitney JC, Peterson SB, Kim J, Pazos M, Verster AJ, Radey MC, et al. (2017). A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. Elife 6.
7. Cao Z, Casabona MG, Kneuper H, Chalmers JD, Palmer T (2016). The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol 2: 16183. doi: 10.1038/nmicrobiol.2016.183 27723728
8. Garcia-Bayona L, Guo MS, Laub MT (2017). Contact-dependent killing by Caulobacter crescentus via cell surface-associated, glycine zipper proteins. Elife 6.
9. Vassallo CN, Cao P, Conklin A, Finkelstein H, Hayes CS, Wall D (2017). Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria. Elife 6.
10. Souza DP, Oka GU, Alvarez-Martinez CE, Bisson-Filho AW, Dunger G, Hobeika L, et al. (2015). Bacterial killing via a type IV secretion system. Nat Commun 6: 6453. doi: 10.1038/ncomms7453 25743609
11. Sgro GG, Oka GU, Souza DP, Cenens W, Bayer-Santos E, Matsuyama BY, et al. (2019). Bacteria-Killing Type IV Secretion Systems. Front Microbiol 10: 1078. doi: 10.3389/fmicb.2019.01078 31164878
12. Grohmann E, Christie PJ, Waksman G, Backert S (2018). Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 107: 455–471. doi: 10.1111/mmi.13896 29235173
13. Cascales E, Christie PJ (2003). The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1: 137–49. doi: 10.1038/nrmicro753 15035043
14. Christie PJ, Vogel JP (2000). Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends Microbiol 8: 354–60. 10920394
15. Sexton JA, Vogel JP (2002). Type IVB secretion by intracellular pathogens. Traffic 3: 178–85. 11886588
16. Guglielmini J, Neron B, Abby SS, Garcillan-Barcia MP, de la Cruz F, Rocha EP (2014). Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res 42: 5715–27. doi: 10.1093/nar/gku194 24623814
17. Guglielmini J, de la Cruz F, Rocha EP (2013). Evolution of conjugation and type IV secretion systems. Mol Biol Evol 30: 315–31. doi: 10.1093/molbev/mss221 22977114
18. Pitzschke A, Hirt H (2010). New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J 29: 1021–32. doi: 10.1038/emboj.2010.8 20150897
19. Fronzes R, Schafer E, Wang L, Saibil HR, Orlova EV, Waksman G (2009). Structure of a type IV secretion system core complex. Science 323: 266–8. doi: 10.1126/science.1166101 19131631
20. Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S, Dujeancourt A, et al. (2014). Structure of a type IV secretion system. Nature 508: 550–553. doi: 10.1038/nature13081 24670658
21. Redzej A, Ukleja M, Connery S, Trokter M, Felisberto-Rodrigues C, Cryar A, et al. (2017). Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery. EMBO J 36: 3080–3095. doi: 10.15252/embj.201796629 28923826
22. Waksman G (2019). From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective. EMBO Rep doi: 10.15252/embr.201847012 30602585
23. Christie PJ (2016). The Mosaic Type IV Secretion Systems. EcoSal Plus 7.
24. Chandran Darbari V, Waksman G (2015). Structural Biology of Bacterial Type IV Secretion Systems. Annu Rev Biochem 84: 603–29. doi: 10.1146/annurev-biochem-062911-102821 26034891
25. Souza DP, Andrade MO, Alvarez-Martinez CE, Arantes GM, Farah CS, Salinas RK (2011). A component of the Xanthomonadaceae type IV secretion system combines a VirB7 motif with a N0 domain found in outer membrane transport proteins. PLoS Pathog 7: e1002031. doi: 10.1371/journal.ppat.1002031 21589901
26. Sgro GG, Costa TRD, Cenens W, Souza DP, Cassago A, Coutinho de Oliveira L, et al. (2018). Cryo-EM structure of the bacteria-killing type IV secretion system core complex from Xanthomonas citri. Nat Microbiol 3: 1429–1440. doi: 10.1038/s41564-018-0262-z 30349081
27. Nagai H, Roy CR (2001). The DotA protein from Legionella pneumophila is secreted by a novel process that requires the Dot/Icm transporter. EMBO J 20: 5962–70. doi: 10.1093/emboj/20.21.5962 11689436
28. Burns DL (2003). Type IV transporters of pathogenic bacteria. Curr Opin Microbiol 6: 29–34. 12615216
29. Cascales E, Christie PJ (2004). Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304: 1170–3. doi: 10.1126/science.1095211 15155952
30. Alegria MC, Souza DP, Andrade MO, Docena C, Khater L, Ramos CH, et al. (2005). Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. J Bacteriol 187: 2315–25. doi: 10.1128/JB.187.7.2315-2325.2005 15774874
31. Jamet A, Nassif X (2015). New players in the toxin field: polymorphic toxin systems in bacteria. MBio 6: e00285–15. doi: 10.1128/mBio.00285-15 25944858
32. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, et al. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7: 514–25. doi: 10.1038/nrmicro2163 19528958
33. Brooke JS (2012). Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25: 2–41. doi: 10.1128/CMR.00019-11 22232370
34. Adegoke AA, Stenstrom TA, Okoh AI (2017). Stenotrophomonas maltophilia as an Emerging Ubiquitous Pathogen: Looking Beyond Contemporary Antibiotic Therapy. Front Microbiol 8: 2276. doi: 10.3389/fmicb.2017.02276 29250041
35. Pompilio A, Crocetta V, Confalone P, Nicoletti M, Petrucca A, Guarnieri S, et al. (2010). Adhesion to and biofilm formation on IB3-1 bronchial cells by Stenotrophomonas maltophilia isolates from cystic fibrosis patients. BMC Microbiol 10: 102. doi: 10.1186/1471-2180-10-102 20374629
36. Pompilio A, Pomponio S, Crocetta V, Gherardi G, Verginelli F, Fiscarelli E, et al. (2011). Phenotypic and genotypic characterization of Stenotrophomonas maltophilia isolates from patients with cystic fibrosis: genome diversity, biofilm formation, and virulence. BMC Microbiol 11: 159. doi: 10.1186/1471-2180-11-159 21729271
37. DuMont AL, Karaba SM, Cianciotto NP (2015). Type II Secretion-Dependent Degradative and Cytotoxic Activities Mediated by Stenotrophomonas maltophilia Serine Proteases StmPr1 and StmPr2. Infect Immun 83: 3825–37. doi: 10.1128/IAI.00672-15 26169274
38. Karaba SM, White RC, Cianciotto NP (2013). Stenotrophomonas maltophilia encodes a type II protein secretion system that promotes detrimental effects on lung epithelial cells. Infect Immun 81: 3210–9. doi: 10.1128/IAI.00546-13 23774603
39. Berg G, Roskot N, Smalla K (1999). Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 37: 3594–600. 10523559
40. Crossman LC, Gould VC, Dow JM, Vernikos GS, Okazaki A, Sebaihia M, et al. (2008). The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 9: R74. doi: 10.1186/gb-2008-9-4-r74 18419807
41. Bi D, Liu L, Tai C, Deng Z, Rajakumar K, Ou HY (2013). SecReT4: a web-based bacterial type IV secretion system resource. Nucleic Acids Res 41: D660–5. doi: 10.1093/nar/gks1248 23193298
42. Vettiger A, Basler M (2016). Type VI Secretion System Substrates Are Transferred and Reused among Sister Cells. Cell 167: 99–110 e12. doi: 10.1016/j.cell.2016.08.023 27616061
43. Cenens W, Andrade MO, Farah CS (2019). Bactericidal Type IV Secretion System Homeostasis in Xanthomonas citri. bioRxiv 647685.
44. Schuster CF, Bertram R (2013). Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. Fems Microbiology Letters 340: 73–85. doi: 10.1111/1574-6968.12074 23289536
45. Lawley TD, Gordon GS, Wright A, Taylor DE (2002). Bacterial conjugative transfer: visualization of successful mating pairs and plasmid establishment in live Escherichia coli. Mol Microbiol 44: 947–56. doi: 10.1046/j.1365-2958.2002.02938.x 12010490
46. Samuels AL, Lanka E, Davies JE (2000). Conjugative junctions in RP4-mediated mating of Escherichia coli. J Bacteriol 182: 2709–15. doi: 10.1128/jb.182.10.2709-2715.2000 10781537
47. Babic A, Lindner AB, Vulic M, Stewart EJ, Radman M (2008). Direct visualization of horizontal gene transfer. Science 319: 1533–6. doi: 10.1126/science.1153498 18339941
48. Petersen TN, Brunak S, von Heijne G, Nielsen H (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785–6. doi: 10.1038/nmeth.1701 21959131
49. Almagro Armenteros JJ, Tsirigos KD, Sonderby CK, Petersen TN, Winther O, Brunak S, et al. (2019). SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol 37: 420–423. doi: 10.1038/s41587-019-0036-z 30778233
50. Kanehisa M, Goto S (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30. doi: 10.1093/nar/28.1.27 10592173
51. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–402. doi: 10.1093/nar/25.17.3389 9254694
52. Linhartova I, Bumba L, Masin J, Basler M, Osicka R, Kamanova J, et al. (2010). RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 34: 1076–112. doi: 10.1111/j.1574-6976.2010.00231.x 20528947
53. Johnson LS, Eddy SR, Portugaly E (2010). Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11: 431. doi: 10.1186/1471-2105-11-431 20718988
54. Holm L, Laakso LM (2016). Dali server update. Nucleic Acids Res 44: W351–5. doi: 10.1093/nar/gkw357 27131377
55. Prochazkova K, Osicka R, Linhartova I, Halada P, Sulc M, Sebo P (2005). The Neisseria meningitidis outer membrane lipoprotein FrpD binds the RTX protein FrpC. J Biol Chem 280: 3251–8. doi: 10.1074/jbc.M411232200 15525636
56. Sviridova E, Rezacova P, Bondar A, Veverka V, Novak P, Schenk G, et al. (2017). Structural basis of the interaction between the putative adhesion-involved and iron-regulated FrpD and FrpC proteins of Neisseria meningitidis. Sci Rep 7: 40408. doi: 10.1038/srep40408 28084396
57. Thompson SA, Sparling PF (1993). The RTX cytotoxin-related FrpA protein of Neisseria meningitidis is secreted extracellularly by meningococci and by HlyBD+ Escherichia coli. Infect Immun 61: 2906–11. 8514394
58. Pompilio A, Crocetta V, Ghosh D, Chakrabarti M, Gherardi G, Vitali LA, et al. (2016). Stenotrophomonas maltophilia Phenotypic and Genotypic Diversity during a 10-year Colonization in the Lungs of a Cystic Fibrosis Patient. Front Microbiol 7: 1551. doi: 10.3389/fmicb.2016.01551 27746770
59. Brooke JS, Di Bonaventura G, Berg G, Martinez JL (2017). Editorial: A Multidisciplinary Look at Stenotrophomonas maltophilia: An Emerging Multi-Drug-Resistant Global Opportunistic Pathogen. Front Microbiol 8: 1511. doi: 10.3389/fmicb.2017.01511 28912755
60. Rouf R, Karaba SM, Dao J, Cianciotto NP (2011). Stenotrophomonas maltophilia strains replicate and persist in the murine lung, but to significantly different degrees. Microbiology 157: 2133–42. doi: 10.1099/mic.0.048157-0 21546584
61. Di Bonaventura G, Pompilio A, Zappacosta R, Petrucci F, Fiscarelli E, Rossi C, et al. (2010). Role of excessive inflammatory response to Stenotrophomonas maltophilia lung infection in DBA/2 mice and implications for cystic fibrosis. Infect Immun 78: 2466–76. doi: 10.1128/IAI.01391-09 20308302
62. Sanchez MB (2015). Antibiotic resistance in the opportunistic pathogen Stenotrophomonas maltophilia. Front Microbiol 6: 658. doi: 10.3389/fmicb.2015.00658 26175724
63. Borgeaud S, Metzger LC, Scrignari T, Blokesch M (2015). The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347: 63–7. doi: 10.1126/science.1260064 25554784
64. Alcoforado Diniz J, Liu YC, Coulthurst SJ (2015). Molecular weaponry: diverse effectors delivered by the Type VI secretion system. Cell Microbiol 17: 1742–51. doi: 10.1111/cmi.12532 26432982
65. Tang JY, Bullen NP, Ahmad S, Whitney JC (2018). Diverse NADase effector families mediate interbacterial antagonism via the type VI secretion system. J Biol Chem 293: 1504–1514. doi: 10.1074/jbc.RA117.000178 29237732
66. Ting SY, Bosch DE, Mangiameli SM, Radey MC, Huang S, Park YJ, et al. (2018). Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell 175: 1380–1392 e14. doi: 10.1016/j.cell.2018.09.037 30343895
67. Forman S, Linhartova I, Osicka R, Nassif X, Sebo P, Pelicic V (2003). Neisseria meningitidis RTX proteins are not required for virulence in infant rats. Infect Immun 71: 2253–7. doi: 10.1128/IAI.71.4.2253-2257.2003 12654851
68. Durand E, Cambillau C, Cascales E, Journet L (2014). VgrG, Tae, Tle, and beyond: the versatile arsenal of Type VI secretion effectors. Trends Microbiol 22: 498–507. doi: 10.1016/j.tim.2014.06.004 25042941
69. da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, et al. (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417: 459–63. doi: 10.1038/417459a 12024217
70. Hayashi K, Morooka N, Yamamoto Y, Fujita K, Isono K, Choi S, et al. (2006). Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2: 2006 0007. doi: 10.1038/msb4100049 16738553
71. Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77–86. doi: 10.1016/s0378-1119(98)00130-9 9661666
72. Welker E, Domfeh Y, Tyagi D, Sinha S, Fisher N (2015). Genetic Manipulation of Stenotrophomonas maltophilia. Curr Protoc Microbiol 37: 6F 2 1–14.
73. Dykxhoorn DM, St Pierre R, Linn T (1996). A set of compatible tac promoter expression vectors. Gene 177: 133–6. doi: 10.1016/0378-1119(96)00289-2 8921858
74. Hachani A, Lossi NS, Filloux A (2013). A visual assay to monitor T6SS-mediated bacterial competition. J Vis Exp doi: 10.3791/50103: e50103. 23542679
75. Hood RD, Singh P, Hsu F, Guvener T, Carl MA, Trinidad RR, et al. (2010). A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7: 25–37. doi: 10.1016/j.chom.2009.12.007 20114026
76. Ginestet C (2011). ggplot2: Elegant Graphics for Data Analysis. Journal of the Royal Statistical Society Series a-Statistics in Society 174: 245–245.
77. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. (2012). Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–82. doi: 10.1038/nmeth.2019 22743772
78. Kabsch W (2010). Xds. Acta Crystallogr D Biol Crystallogr 66: 125–32. doi: 10.1107/S0907444909047337 20124692
79. Schneider TR, Sheldrick GM (2002). Substructure solution with SHELXD. Acta Crystallogr D Biol Crystallogr 58: 1772–9. doi: 10.1107/s0907444902011678 12351820
80. Skubak P, Pannu NS (2013). Automatic protein structure solution from weak X-ray data. Nat Commun 4: 2777. doi: 10.1038/ncomms3777 24231803
81. Potterton L, Agirre J, Ballard C, Cowtan K, Dodson E, Evans PR, et al. (2018). CCP4i2: the new graphical user interface to the CCP4 program suite. Acta Crystallogr D Struct Biol 74: 68–84. doi: 10.1107/S2059798317016035 29533233
82. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66: 213–21. doi: 10.1107/S0907444909052925 20124702
83. Emsley P, Cowtan K (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–32. doi: 10.1107/S0907444904019158 15572765
84. Heinig M, Frishman D (2004). STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32: W500–2. doi: 10.1093/nar/gkh429 15215436
85. Sievers F, Higgins DG (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Science 27: 135–145. doi: 10.1002/pro.3290 28884485
86. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004). WebLogo: A sequence logo generator. Genome Research 14: 1188–1190. doi: 10.1101/gr.849004 15173120
87. Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, et al. (2016). ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res 44: W344–50. doi: 10.1093/nar/gkw408 27166375
88. Kumar S, Stecher G, Tamura K (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33: 1870–4. doi: 10.1093/molbev/msw054 27004904
89. El Yacoubi B, Brunings AM, Yuan Q, Shankar S, Gabriel DW (2007). In planta horizontal transfer of a major pathogenicity effector gene. Appl Environ Microbiol 73: 1612–21. doi: 10.1128/AEM.00261-06 17220258
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 9
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Stillova choroba: vzácné a závažné systémové onemocnění
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Mucosal CD8+ T cell responses induced by an MCMV based vaccine vector confer protection against influenza challenge
- Anti-HIV potency of T-cell responses elicited by dendritic cell therapeutic vaccination
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- Phytoplasma SAP11 effector destabilization of TCP transcription factors differentially impact development and defence of Arabidopsis versus maize