HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11
Autoři:
Cosima Zimmermann aff001; Daniel Kowalewski aff003; Liane Bauersfeld aff001; Andreas Hildenbrand aff001; Carolin Gerke aff001; Magdalena Schwarzmüller aff001; Vu Thuy Khanh Le-Trilling aff006; Stefan Stevanovic aff003; Hartmut Hengel aff001; Frank Momburg aff007; Anne Halenius aff001
Působiště autorů:
Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
aff001; Faculty of Medicine, University of Freiburg, Freiburg, Germany
aff002; Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
aff003; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
aff004; Faculty of Biology, University of Freiburg, Freiburg, Germany
aff005; Institute for Virology, University Duisburg-Essen, Essen, Germany
aff006; Clinical Cooperation Unit Applied Tumor Immunity, Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center, Heidelberg, Germany
aff007
Vyšlo v časopise:
HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11. PLoS Pathog 15(9): e1008040. doi:10.1371/journal.ppat.1008040
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008040
Souhrn
To escape CD8+ T-cell immunity, human cytomegalovirus (HCMV) US11 redirects MHC-I for rapid ER-associated proteolytic degradation (ERAD). In humans, classical MHC-I molecules are encoded by the highly polymorphic HLA-A, -B and -C gene loci. While HLA-C resists US11 degradation, the specificity for HLA-A and HLA-B products has not been systematically studied. In this study we analyzed the MHC-I peptide ligands in HCMV-infected cells. A US11-dependent loss of HLA-A ligands was observed, but not of HLA-B. We revealed a general ability of HLA-B to assemble with β2m and exit from the ER in the presence of US11. Surprisingly, a low-complexity region between the signal peptide sequence and the Ig-like domain of US11, was necessary to form a stable interaction with assembled MHC-I and, moreover, this region was also responsible for changing the pool of HLA-B ligands. Our data suggest a two-pronged strategy by US11 to escape CD8+ T-cell immunity, firstly, by degrading HLA-A molecules, and secondly, by manipulating the HLA-B ligandome.
Klíčová slova:
Research and analysis methods – Biological cultures – Cell lines – HeLa cells – Cell cultures – Cultured tumor cells – Precipitation techniques – Immunoprecipitation – Co-immunoprecipitation – Spectrum analysis techniques – Spectrophotometry – Cytophotometry – Flow cytometry – Biology and life sciences – Organisms – Viruses – DNA viruses – Herpesviruses – Human cytomegalovirus – Microbiology – Medical microbiology – Microbial pathogens – Viral pathogens – Genetics – Gene expression – Gene regulation – Small interfering RNAs – Biochemistry – Nucleic acids – RNA – Non-coding RNA – Cell biology – Cellular types – Animal cells – Connective tissue cells – Fibroblasts – Blood cells – White blood cells – T cells – Cytotoxic T cells – Immune cells – Anatomy – Biological tissue – Connective tissue – Medicine and health sciences – Pathology and laboratory medicine – Pathogens – Immunology
Zdroje
1. Rolle A, Brodin P. Immune Adaptation to Environmental Influence: The Case of NK Cells and HCMV. Trends in immunology. 2016;37(3):233–43. Epub 2016/02/13. doi: 10.1016/j.it.2016.01.005 26869205.
2. Waller EC, Day E, Sissons JG, Wills MR. Dynamics of T cell memory in human cytomegalovirus infection. Medical microbiology and immunology. 2008;197(2):83–96. Epub 2008/02/28. doi: 10.1007/s00430-008-0082-5 18301918.
3. Reddehase MJ, Mutter W, Munch K, Buhring HJ, Koszinowski UH. CD8-positive T lymphocytes specific for murine cytomegalovirus immediate-early antigens mediate protective immunity. Journal of virology. 1987;61(10):3102–8. Epub 1987/10/01. 3041033; PubMed Central PMCID: PMC255886.
4. Peaper DR, Cresswell P. Regulation of MHC class I assembly and peptide binding. Annual review of cell and developmental biology. 2008;24:343–68. Epub 2008/08/30. doi: 10.1146/annurev.cellbio.24.110707.175347 18729726.
5. Blees A, Januliene D, Hofmann T, Koller N, Schmidt C, Trowitzsch S, et al. Structure of the human MHC-I peptide-loading complex. Nature. 2017;551(7681):525–8. Epub 2017/11/07. doi: 10.1038/nature24627 29107940.
6. Halenius A, Gerke C, Hengel H. Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets-but how many arrows in the quiver? Cellular & molecular immunology. 2015;12(2):139–53. Epub 2014/11/25. doi: 10.1038/cmi.2014.105 25418469.
7. Ahn K, Gruhler A, Galocha B, Jones TR, Wiertz EJ, Ploegh HL, et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity. 1997;6(5):613–21. Epub 1997/05/01. 9175839.
8. Hengel H, Koopmann JO, Flohr T, Muranyi W, Goulmy E, Hammerling GJ, et al. A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity. 1997;6(5):623–32. Epub 1997/05/01. 9175840.
9. Lehner PJ, Karttunen JT, Wilkinson GW, Cresswell P. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(13):6904–9. Epub 1997/06/24. doi: 10.1073/pnas.94.13.6904 9192664; PubMed Central PMCID: PMC21257.
10. Jones TR, Wiertz EJ, Sun L, Fish KN, Nelson JA, Ploegh HL. Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(21):11327–33. Epub 1996/10/15. doi: 10.1073/pnas.93.21.11327 8876135; PubMed Central PMCID: PMC38057.
11. Wiertz EJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell. 1996;84(5):769–79. Epub 1996/03/08. doi: 10.1016/s0092-8674(00)81054-5 8625414.
12. Jones TR, Sun L. Human cytomegalovirus US2 destabilizes major histocompatibility complex class I heavy chains. Journal of virology. 1997;71(4):2970–9. Epub 1997/04/01. 9060656; PubMed Central PMCID: PMC191425.
13. Park B, Kim Y, Shin J, Lee S, Cho K, Fruh K, et al. Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity. 2004;20(1):71–85. Epub 2004/01/24. 14738766.
14. Gewurz BE, Gaudet R, Tortorella D, Wang EW, Ploegh HL, Wiley DC. Antigen presentation subverted: Structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(12):6794–9. Epub 2001/06/08. doi: 10.1073/pnas.121172898 11391001; PubMed Central PMCID: PMC34432.
15. Lilley BN, Tortorella D, Ploegh HL. Dislocation of a type I membrane protein requires interactions between membrane-spanning segments within the lipid bilayer. Molecular biology of the cell. 2003;14(9):3690–8. Epub 2003/09/16. doi: 10.1091/mbc.E03-03-0192 12972557; PubMed Central PMCID: PMC196560.
16. Barel MT, Pizzato N, van Leeuwen D, Bouteiller PL, Wiertz EJ, Lenfant F. Amino acid composition of alpha1/alpha2 domains and cytoplasmic tail of MHC class I molecules determine their susceptibility to human cytomegalovirus US11-mediated down-regulation. Eur J Immunol. 2003;33(6):1707–16. Epub 2003/06/05. doi: 10.1002/eji.200323912 12778489.
17. Schust DJ, Tortorella D, Seebach J, Phan C, Ploegh HL. Trophoblast class I major histocompatibility complex (MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus (HCMV) gene products US2 and US11. The Journal of experimental medicine. 1998;188(3):497–503. Epub 1998/08/04. doi: 10.1084/jem.188.3.497 9687527; PubMed Central PMCID: PMC2212475.
18. Ameres S, Mautner J, Schlott F, Neuenhahn M, Busch DH, Plachter B, et al. Presentation of an immunodominant immediate-early CD8+ T cell epitope resists human cytomegalovirus immunoevasion. PLoS pathogens. 2013;9(5):e1003383. Epub 2013/05/30. doi: 10.1371/journal.ppat.1003383 23717207; PubMed Central PMCID: PMC3662661.
19. Hsu JL, van den Boomen DJ, Tomasec P, Weekes MP, Antrobus R, Stanton RJ, et al. Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141. PLoS pathogens. 2015;11(4):e1004811. Epub 2015/04/16. doi: 10.1371/journal.ppat.1004811 25875600; PubMed Central PMCID: PMC4397069.
20. Barel MT, Pizzato N, Le Bouteiller P, Wiertz EJ, Lenfant F. Subtle sequence variation among MHC class I locus products greatly influences sensitivity to HCMV US2- and US11-mediated degradation. International immunology. 2006;18(1):173–82. Epub 2005/12/20. doi: 10.1093/intimm/dxh362 16361314.
21. Ameres S, Besold K, Plachter B, Moosmann A. CD8 T Cell-Evasive Functions of Human Cytomegalovirus Display Pervasive MHC Allele Specificity, Complementarity, and Cooperativity. J Immunol. 2014. Epub 2014/05/09. doi: 10.4049/jimmunol.1302281 24808364.
22. Lilley BN, Ploegh HL. A membrane protein required for dislocation of misfolded proteins from the ER. Nature. 2004;429(6994):834–40. Epub 2004/06/25. doi: 10.1038/nature02592 15215855.
23. van de Weijer ML, Bassik MC, Luteijn RD, Voorburg CM, Lohuis MA, Kremmer E, et al. A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation. Nature communications. 2014;5:3832. Epub 2014/05/09. doi: 10.1038/ncomms4832 24807418; PubMed Central PMCID: PMC4024746.
24. van den Boomen DJ, Timms RT, Grice GL, Stagg HR, Skodt K, Dougan G, et al. TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(31):11425–30. Epub 2014/07/18. doi: 10.1073/pnas.1409099111 25030448; PubMed Central PMCID: PMC4128144.
25. van den Boomen DJ, Lehner PJ. Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I. Molecular immunology. 2015. Epub 2015/07/27. doi: 10.1016/j.molimm.2015.07.005 26210183.
26. Pande NT, Powers C, Ahn K, Fruh K. Rhesus cytomegalovirus contains functional homologues of US2, US3, US6, and US11. Journal of virology. 2005;79(9):5786–98. Epub 2005/04/14. doi: 10.1128/JVI.79.9.5786-5798.2005 15827193; PubMed Central PMCID: PMC1082751.
27. Davison AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, et al. The human cytomegalovirus genome revisited: comparison with the chimpanzee cytomegalovirus genome. The Journal of general virology. 2003;84(Pt 1):17–28. Epub 2003/01/21. doi: 10.1099/vir.0.18606-0 12533697. 12533697
28. Fruh K, Picker L. CD8+ T cell programming by cytomegalovirus vectors: applications in prophylactic and therapeutic vaccination. Current opinion in immunology. 2017;47:52–6. Epub 2017/07/25. doi: 10.1016/j.coi.2017.06.010 28734175; PubMed Central PMCID: PMC5626601.
29. Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I, et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science. 2013;340(6135):1237874. Epub 2013/05/25. doi: 10.1126/science.1237874 23704576; PubMed Central PMCID: PMC3816976.
30. Hook LM, Grey F, Grabski R, Tirabassi R, Doyle T, Hancock M, et al. Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion. Cell host & microbe. 2014;15(3):363–73. doi: 10.1016/j.chom.2014.02.004 24629342; PubMed Central PMCID: PMC4029511.
31. Cho S, Kim BY, Ahn K, Jun Y. The C-terminal amino acid of the MHC-I heavy chain is critical for binding to Derlin-1 in human cytomegalovirus US11-induced MHC-I degradation. PloS one. 2013;8(8):e72356. Epub 2013/08/21. doi: 10.1371/journal.pone.0072356 23951315; PubMed Central PMCID: PMC3741148.
32. Hochman JH, Shimizu Y, DeMars R, Edidin M. Specific associations of fluorescent beta-2-microglobulin with cell surfaces. The affinity of different H-2 and HLA antigens for beta-2-microglobulin. J Immunol. 1988;140(7):2322–9. Epub 1988/04/01. 2450918.
33. Halenius A, Hauka S, Dolken L, Stindt J, Reinhard H, Wiek C, et al. Human cytomegalovirus disrupts the major histocompatibility complex class I peptide-loading complex and inhibits tapasin gene transcription. Journal of virology. 2011;85(7):3473–85. Epub 2011/01/21. doi: 10.1128/JVI.01923-10 21248040; PubMed Central PMCID: PMC3067861.
34. Wootton JC. Non-globular domains in protein sequences: automated segmentation using complexity measures. Computers & chemistry. 1994;18(3):269–85. Epub 1994/09/01. 7952898.
35. Coletta A, Pinney JW, Solis DY, Marsh J, Pettifer SR, Attwood TK. Low-complexity regions within protein sequences have position-dependent roles. BMC systems biology. 2010;4:43. Epub 2010/04/14. doi: 10.1186/1752-0509-4-43 20385029; PubMed Central PMCID: 20385029.
36. Turnquist HR, Schenk EL, McIlhaney MM, Hickman HD, Hildebrand WH, Solheim JC. Disparate binding of chaperone proteins by HLA-A subtypes. Immunogenetics. 2002;53(10–11):830–4. Epub 2002/02/28. doi: 10.1007/s00251-001-0404-x 11862383.
37. Perosa F, Luccarelli G, Prete M, Favoino E, Ferrone S, Dammacco F. Beta 2-microglobulin-free HLA class I heavy chain epitope mimicry by monoclonal antibody HC-10-specific peptide. J Immunol. 2003;171(4):1918–26. Epub 2003/08/07. doi: 10.4049/jimmunol.171.4.1918 12902494.
38. Beutler N, Hauka S, Niepel A, Kowalewski DJ, Uhlmann J, Ghanem E, et al. A natural tapasin isoform lacking exon 3 modifies peptide loading complex function. Eur J Immunol. 2013;43(6):1459–69. Epub 2013/03/23. doi: 10.1002/eji.201242725 23519916.
39. Wearsch PA, Cresswell P. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer. Nature immunology. 2007;8(8):873–81. Epub 2007/07/03. doi: 10.1038/ni1485 17603487.
40. Chen M, Bouvier M. Analysis of interactions in a tapasin/class I complex provides a mechanism for peptide selection. The EMBO journal. 2007;26(6):1681–90. Epub 2007/03/03. doi: 10.1038/sj.emboj.7601624 17332746; PubMed Central PMCID: PMC1829385.
41. Williams AP, Peh CA, Purcell AW, McCluskey J, Elliott T. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity. 2002;16(4):509–20. Epub 2002/04/24. 11970875.
42. Ahn K, Angulo A, Ghazal P, Peterson PA, Yang Y, Fruh K. Human cytomegalovirus inhibits antigen presentation by a sequential multistep process. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(20):10990–5. Epub 1996/10/01. doi: 10.1073/pnas.93.20.10990 8855296; PubMed Central PMCID: PMC38271.
43. Kowalewski DJ, Stevanovic S. Biochemical large-scale identification of MHC class I ligands. Methods Mol Biol. 2013;960:145–57. Epub 2013/01/19. doi: 10.1007/978-1-62703-218-6_12 23329485.
44. Nielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein science: a publication of the Protein Society. 2003;12(5):1007–17. Epub 2003/04/30. doi: 10.1110/ps.0239403 12717023; PubMed Central PMCID: PMC2323871.
45. Vogel R, Al-Daccak R, Drews O, Alonzeau J, Mester G, Charron D, et al. Mass spectrometry reveals changes in MHC I antigen presentation after lentivector expression of a gene regulation system. Molecular therapy Nucleic acids. 2013;2:e75. Epub 2013/02/14. doi: 10.1038/mtna.2013.3 23403517; PubMed Central PMCID: PMC3586803.
46. Macdonald WA, Purcell AW, Mifsud NA, Ely LK, Williams DS, Chang L, et al. A naturally selected dimorphism within the HLA-B44 supertype alters class I structure, peptide repertoire, and T cell recognition. The Journal of experimental medicine. 2003;198(5):679–91. doi: 10.1084/jem.20030066 12939341; PubMed Central PMCID: PMC2194191.
47. Stern-Ginossar N, Weisburd B, Michalski A, Le VT, Hein MY, Huang SX, et al. Decoding human cytomegalovirus. Science. 2012;338(6110):1088–93. Epub 2012/11/28. doi: 10.1126/science.1227919 23180859.
48. Brodin P, Jojic V, Gao T, Bhattacharya S, Angel CJ, Furman D, et al. Variation in the human immune system is largely driven by non-heritable influences. Cell. 2015;160(1–2):37–47. Epub 2015/01/17. doi: 10.1016/j.cell.2014.12.020 25594173; PubMed Central PMCID: PMC4302727.
49. Romania P, Cifaldi L, Pignoloni B, Starc N, D'Alicandro V, Melaiu O, et al. Identification of a Genetic Variation in ERAP1 Aminopeptidase that Prevents Human Cytomegalovirus miR-UL112-5p-Mediated Immunoevasion. Cell reports. 2017;20(4):846–53. Epub 2017/07/27. doi: 10.1016/j.celrep.2017.06.084 28746870.
50. Furman MH, Dey N, Tortorella D, Ploegh HL. The human cytomegalovirus US10 gene product delays trafficking of major histocompatibility complex class I molecules. Journal of virology. 2002;76(22):11753–6. Epub 2002/10/22. doi: 10.1128/JVI.76.22.11753-11756.2002 12388737; PubMed Central PMCID: PMC136774.
51. Tirabassi RS, Ploegh HL. The human cytomegalovirus US8 glycoprotein binds to major histocompatibility complex class I products. Journal of virology. 2002;76(13):6832–5. Epub 2002/06/07. 12doi: 10.1128/JVI.76.13.6832-6835.2002 1205039650396; PubMed Central PMCID: PMC136258.
52. Trgovcich J, Cebulla C, Zimmerman P, Sedmak DD. Human cytomegalovirus protein pp71 disrupts major histocompatibility complex class I cell surface expression. Journal of virology. 2006;80(2):951–63. Epub 2005/12/28. doi: 10.1128/JVI.80.2.951-963.2006 16378997; PubMed Central PMCID: PMC1346885.
53. Erhard F, Halenius A, Zimmermann C, L'Hernault A, Kowalewski DJ, Weekes MP, et al. Improved Ribo-seq enables identification of cryptic translation events. Nature methods. 2018;15(5):363–6. Epub 2018/03/13. doi: 10.1038/nmeth.4631 29529017.
54. Ameres S, Besold K, Plachter B, Moosmann A. CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity. J Immunol. 2014;192(12):5894–905. Epub 2014/05/09. doi: 10.4049/jimmunol.1302281 24808364.
55. Besold K, Wills M, Plachter B. Immune evasion proteins gpUS2 and gpUS11 of human cytomegalovirus incompletely protect infected cells from CD8 T cell recognition. Virology. 2009;391(1):5–19. Epub 2009/07/03. doi: 10.1016/j.virol.2009.06.004 19570562.
56. Rajapaksa US, Li D, Peng YC, McMichael AJ, Dong T, Xu XN. HLA-B may be more protective against HIV-1 than HLA-A because it resists negative regulatory factor (Nef) mediated down-regulation. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(33):13353–8. doi: 10.1073/pnas.1204199109 22826228; PubMed Central PMCID: PMC3421200.
57. Rado-Trilla N, Alba M. Dissecting the role of low-complexity regions in the evolution of vertebrate proteins. BMC evolutionary biology. 2012;12:155. Epub 2012/08/28. doi: 10.1186/1471-2148-12-155 22920595; PubMed Central PMCID: PMC3523016.
58. Parham P, Barnstable CJ, Bodmer WF. Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,B,C, antigens. J Immunol. 1979;123(1):342–9. Epub 1979/07/01. 87477.
59. Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity. 1996;5(2):103–14. Epub 1996/08/01. 8769474.
60. Barel MT, Hassink GC, van Voorden S, Wiertz EJ. Human cytomegalovirus-encoded US2 and US11 target unassembled MHC class I heavy chains for degradation. Molecular immunology. 2006;43(8):1258–66. Epub 2005/08/16. doi: 10.1016/j.molimm.2005.07.005 16098592.
61. Li L, Santarsiero BD, Bouvier M. Structure of the Adenovirus Type 4 (Species E) E3-19K/HLA-A2 Complex Reveals Species-Specific Features in MHC Class I Recognition. J Immunol. 2016;197(4):1399–407. Epub 2016/07/08. doi: 10.4049/jimmunol.1600541 27385781; PubMed Central PMCID: PMC4975982.
62. Nitschke K, Luxenburger H, Kiraithe MM, Thimme R, Neumann-Haefelin C. CD8+ T-Cell Responses in Hepatitis B and C: The (HLA-) A, B, and C of Hepatitis B and C. Dig Dis. 2016;34(4):396–409. doi: 10.1159/000444555 27170395.
63. Goulder PJ, Walker BD. HIV and HLA class I: an evolving relationship. Immunity. 2012;37(3):426–40. doi: 10.1016/j.immuni.2012.09.005 22999948; PubMed Central PMCID: PMC3966573.
64. Hertz T, Nolan D, James I, John M, Gaudieri S, Phillips E, et al. Mapping the landscape of host-pathogen coevolution: HLA class I binding and its relationship with evolutionary conservation in human and viral proteins. Journal of virology. 2011;85(3):1310–21. doi: 10.1128/JVI.01966-10 21084470; PubMed Central PMCID: PMC3020499.
65. Gumperz JE, Litwin V, Phillips JH, Lanier LL, Parham P. The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. The Journal of experimental medicine. 1995;181(3):1133–44. doi: 10.1084/jem.181.3.1133 7532677; PubMed Central PMCID: PMC2191933.
66. Busche A, Jirmo AC, Welten SP, Zischke J, Noack J, Constabel H, et al. Priming of CD8+ T cells against cytomegalovirus-encoded antigens is dominated by cross-presentation. J Immunol. 2013;190(6):2767–77. doi: 10.4049/jimmunol.1200966 23390296.
67. Seckert CK, Schader SI, Ebert S, Thomas D, Freitag K, Renzaho A, et al. Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. The Journal of general virology. 2011;92(Pt 9):1994–2005. doi: 10.1099/vir.0.031815-0 21632567.
68. Matschulla T, Berry R, Gerke C, Döring M, Busch J, Paijo J, et al. A highly conserved sequence of the viral TAP inhibitor ICP47 is required for freezing of the peptide transport cycle. Scientific reports. 2017;7(1):2933. doi: 10.1038/s41598-017-02994-5 28592828
69. D'Urso CM, Wang ZG, Cao Y, Tatake R, Zeff RA, Ferrone S. Lack of HLA class I antigen expression by cultured melanoma cells FO-1 due to a defect in B2m gene expression. The Journal of clinical investigation. 1991;87(1):284–92. Epub 1991/01/01. doi: 10.1172/JCI114984 1898655; PubMed Central PMCID: PMC295046.
70. Wagner M, Ruzsics Z, Koszinowski UH. Herpesvirus genetics has come of age. Trends in microbiology. 2002;10(7):318–24. Epub 2002/07/12. 12110210.
71. Le VT, Trilling M, Hengel H. The cytomegaloviral protein pUL138 acts as potentiator of tumor necrosis factor (TNF) receptor 1 surface density to enhance ULb'-encoded modulation of TNF-alpha signaling. Journal of virology. 2011;85(24):13260–70. Epub 2011/10/07. doi: 10.1128/JVI.06005-11 21976655; PubMed Central PMCID: PMC3233134.
72. Atalay R, Zimmermann A, Wagner M, Borst E, Benz C, Messerle M, et al. Identification and expression of human cytomegalovirus transcription units coding for two distinct Fcgamma receptor homologs. Journal of virology. 2002;76(17):8596–608. Epub 2002/08/07. doi: 10.1128/JVI.76.17.8596-8608.2002 12163579; PubMed Central PMCID: PMC136976.
73. Sinzger C, Hahn G, Digel M, Katona R, Sampaio KL, Messerle M, et al. Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. The Journal of general virology. 2008;89(Pt 2):359–68. doi: 10.1099/vir.0.83286–0 18198366.
74. Brodsky FM, Parham P, Barnstable CJ, Crumpton MJ, Bodmer WF. Monoclonal antibodies for analysis of the HLA system. Immunological reviews. 1979;47:3–61. Epub 1979/01/01. doi: 10.1111/j.1600-065x.1979.tb00288.x 95015.
75. Tahara T, Yang SY, Khan R, Abish S, Hammerling GJ, Hammerling U. HLA antibody responses in HLA class I transgenic mice. Immunogenetics. 1990;32(5):351–60. Epub 1990/01/01. doi: 10.1007/bf00211650 2249882.
76. Stam NJ, Vroom TM, Peters PJ, Pastoors EB, Ploegh HL. HLA-A- and HLA-B-specific monoclonal antibodies reactive with free heavy chains in western blots, in formalin-fixed, paraffin-embedded tissue sections and in cryo-immuno-electron microscopy. International immunology. 1990;2(2):113–25. Epub 1990/01/01. doi: 10.1093/intimm/2.2.113 2088481.
77. Kowalewski DJ, Schuster H, Backert L, Berlin C, Kahn S, Kanz L, et al. HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proceedings of the National Academy of Sciences of the United States of America. 2015;112(2):E166–75. Epub 2014/12/31. doi: 10.1073/pnas.1416389112 25548167; PubMed Central PMCID: PMC4299203.
78. Kall L, Canterbury JD, Weston J, Noble WS, MacCoss MJ. Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nature methods. 2007;4(11):923–5. Epub 2007/10/24. doi: 10.1038/nmeth1113 17952086.
79. Gonen-Gross T, Achdout H, Arnon TI, Gazit R, Stern N, Horejsi V, et al. The CD85J/leukocyte inhibitory receptor-1 distinguishes between conformed and beta 2-microglobulin-free HLA-G molecules. J Immunol. 2005;175(8):4866–74. doi: 10.4049/jimmunol.175.8.4866 16210588.
80. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14(6):1188–90. doi: 10.1101/gr.849004 15173120; PubMed Central PMCID: PMC419797.
81. Bardou P, Mariette J, Escudie F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15:293. doi: 10.1186/1471-2105-15-293 25176396; PubMed Central PMCID: PMC4261873.
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 9
- Stillova choroba: vzácné a závažné systémové onemocnění
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Is reliance on an inaccurate genome sequence sabotaging your experiments?
- The molecular clock of Mycobacterium tuberculosis
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11