An essential thioredoxin-type protein of Trypanosoma brucei acts as redox-regulated mitochondrial chaperone
Autoři:
Rachel B. Currier aff001; Kathrin Ulrich aff001; Alejandro E. Leroux aff001; Natalie Dirdjaja aff001; Matías Deambrosi aff003; Mariana Bonilla aff003; Yasar Luqman Ahmed aff001; Lorenz Adrian aff005; Haike Antelmann aff007; Ursula Jakob aff002; Marcelo A. Comini aff003; R. Luise Krauth-Siegel aff001
Působiště autorů:
Biochemie-Zentrum der Universität Heidelberg (BZH), Heidelberg, Germany
aff001; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
aff002; Group Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Montevideo, Uruguay
aff003; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
aff004; Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
aff005; Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany
aff006; Institut für Biologie-Mikrobiologie, Freie Universität Berlin, Berlin, Germany
aff007
Vyšlo v časopise:
An essential thioredoxin-type protein of Trypanosoma brucei acts as redox-regulated mitochondrial chaperone. PLoS Pathog 15(9): e32767. doi:10.1371/journal.ppat.1008065
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008065
Souhrn
Most known thioredoxin-type proteins (Trx) participate in redox pathways, using two highly conserved cysteine residues to catalyze thiol-disulfide exchange reactions. Here we demonstrate that the so far unexplored Trx2 from African trypanosomes (Trypanosoma brucei) lacks protein disulfide reductase activity but functions as an effective temperature-activated and redox-regulated chaperone. Immunofluorescence microscopy and fractionated cell lysis revealed that Trx2 is located in the mitochondrion of the parasite. RNA-interference and gene knock-out approaches showed that depletion of Trx2 impairs growth of both mammalian bloodstream and insect stage procyclic parasites. Procyclic cells lacking Trx2 stop proliferation under standard culture conditions at 27°C and are unable to survive prolonged exposure to 37°C, indicating that Trx2 plays a vital role that becomes augmented under heat stress. Moreover, we found that Trx2 contributes to the in vivo infectivity of T. brucei. Remarkably, a Trx2 version, in which all five cysteines were replaced by serine residues, complements for the wildtype protein in conditional knock-out cells and confers parasite infectivity in the mouse model. Characterization of the recombinant protein revealed that Trx2 can coordinate an iron sulfur cluster and is highly sensitive towards spontaneous oxidation. Moreover, we discovered that both wildtype and mutant Trx2 protect other proteins against thermal aggregation and preserve their ability to refold upon return to non-stress conditions. Activation of the chaperone function of Trx2 appears to be triggered by temperature-mediated structural changes and inhibited by oxidative disulfide bond formation. Our studies indicate that Trx2 acts as a novel chaperone in the unique single mitochondrion of T. brucei and reveal a new perspective regarding the physiological function of thioredoxin-type proteins in trypanosomes.
Klíčová slova:
Cysteine – Luciferase – Mitochondria – Parasitic diseases – Recombinant proteins – RNA interference – Trypanosoma brucei gambiense – Trypanosoma
Zdroje
1. Fairlamb AH, Blackburn P, Ulrich P, Chait BT, Cerami A. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science. 1985;227(4693):1485–7. doi: 10.1126/science.3883489 3883489.
2. Krauth-Siegel RL, Comini MA. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta. 2008;1780(11):1236–48. doi: 10.1016/j.bbagen.2008.03.006 18395526.
3. Krauth-Siegel RL, Leroux AE. Low-molecular-mass antioxidants in parasites. Antioxid Redox Signal. 2012;17(4):583–607. doi: 10.1089/ars.2011.4392 22053812.
4. Manta B, Bonilla M, Fiestas L, Sturlese M, Salinas G, Bellanda M, et al. Polyamine-Based Thiols in Trypanosomatids: Evolution, Protein Structural Adaptations, and Biological Functions. Antioxid Redox Signal. 2017. doi: 10.1089/ars.2017.7133 29048199.
5. Manta B, Comini M, Medeiros A, Hugo M, Trujillo M, Radi R. Trypanothione: a unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta. 2013;1830(5):3199–216. doi: 10.1016/j.bbagen.2013.01.013 23396001.
6. Dormeyer M, Reckenfelderbaumer N, Ludemann H, Krauth-Siegel RL. Trypanothione-dependent synthesis of deoxyribonucleotides by Trypanosoma brucei ribonucleotide reductase. J Biol Chem. 2001;276(14):10602–6. doi: 10.1074/jbc.M010352200 11150302.
7. Hiller C, Nissen A, Benitez D, Comini MA, Krauth-Siegel RL. Cytosolic peroxidases protect the lysosome of bloodstream African trypanosomes from iron-mediated membrane damage. PLoS Pathog. 2014;10(4):e1004075. doi: 10.1371/journal.ppat.1004075 24722489; PubMed Central PMCID: PMC3983053.
8. Wilkinson SR, Horn D, Prathalingam SR, Kelly JM. RNA interference identifies two hydroperoxide metabolizing enzymes that are essential to the bloodstream form of the african trypanosome. J Biol Chem. 2003;278(34):31640–6. doi: 10.1074/jbc.M303035200 12791697.
9. Bogacz M, Krauth-Siegel RL. Tryparedoxin peroxidase-deficiency commits trypanosomes to ferroptosis-type cell death. Elife. 2018;7. doi: 10.7554/eLife.37503 30047863; PubMed Central PMCID: PMC6117152.
10. Comini MA, Krauth-Siegel RL, Flohe L. Depletion of the thioredoxin homologue tryparedoxin impairs antioxidative defence in African trypanosomes. Biochem J. 2007;402(1):43–9. doi: 10.1042/BJ20061341 17040206; PubMed Central PMCID: PMC1783994.
11. Comini MA, Krauth-Siegel RL, Bellanda M. Mono- and dithiol glutaredoxins in the trypanothione-based redox metabolism of pathogenic trypanosomes. Antioxid Redox Signal. 2013;19(7):708–22. doi: 10.1089/ars.2012.4932 22978520; PubMed Central PMCID: PMC3739957.
12. Ebersoll S, Musunda B, Schmenger T, Dirdjaja N, Bonilla M, Manta B, et al. A glutaredoxin in the mitochondrial intermembrane space has stage-specific functions in the thermo-tolerance and proliferation of African trypanosomes. Redox Biol. 2018;15:532–47. doi: 10.1016/j.redox.2018.01.011 29413965.
13. Musunda B, Benitez D, Dirdjaja N, Comini MA, Krauth-Siegel RL. Glutaredoxin-deficiency confers bloodstream Trypanosoma brucei with improved thermotolerance. Molecular and biochemical parasitology. 2015;204(2):93–105. doi: 10.1016/j.molbiopara.2016.02.001 26854591.
14. Schmidt A, Clayton CE, Krauth-Siegel RL. Silencing of the thioredoxin gene in Trypanosoma brucei brucei. Molecular and biochemical parasitology. 2002;125(1–2):207–10. doi: 10.1016/s0166-6851(02)00215-3 12467989.
15. Arner ES, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267(20):6102–9. doi: 10.1046/j.1432-1327.2000.01701.x 11012661.
16. Berndt C, Lillig CH, Holmgren A. Thioredoxins and glutaredoxins as facilitators of protein folding. Biochim Biophys Acta. 2008;1783(4):641–50. doi: 10.1016/j.bbamcr.2008.02.003 18331844.
17. Laurent TC, Moore EC, Reichard P. Enzymatic synthesis of deoxyribonucleotides. Iv. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem. 1964;239:3436–44. 14245400.
18. Schmidt H, Krauth-Siegel RL. Functional and physicochemical characterization of the thioredoxin system in Trypanosoma brucei. J Biol Chem. 2003;278(47):46329–36. doi: 10.1074/jbc.M305338200 12949079.
19. Tomas AM, Castro H. Redox metabolism in mitochondria of trypanosomatids. Antioxid Redox Signal. 2013;19(7):696–707. doi: 10.1089/ars.2012.4948 23025438; PubMed Central PMCID: PMC3739956.
20. Alsford S, Turner DJ, Obado SO, Sanchez-Flores A, Glover L, Berriman M, et al. High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome. Genome research. 2011;21(6):915–24. doi: 10.1101/gr.115089.110 21363968; PubMed Central PMCID: PMC3106324.
21. Reckenfelderbaumer N, Ludemann H, Schmidt H, Steverding D, Krauth-Siegel RL. Identification and functional characterization of thioredoxin from Trypanosoma brucei brucei. J Biol Chem. 2000;275(11):7547–52. doi: 10.1074/jbc.275.11.7547 10713060.
22. Niemann M, Wiese S, Mani J, Chanfon A, Jackson C, Meisinger C, et al. Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Mol Cell Proteomics. 2013;12(2):515–28. doi: 10.1074/mcp.M112.023093 23221899; PubMed Central PMCID: PMC3567870.
23. Peikert CD, Mani J, Morgenstern M, Kaser S, Knapp B, Wenger C, et al. Charting organellar importomes by quantitative mass spectrometry. Nat Commun. 2017;8:15272. doi: 10.1038/ncomms15272 28485388; PubMed Central PMCID: PMC5436138.
24. Mossmann D, Meisinger C, Vogtle FN. Processing of mitochondrial presequences. Biochim Biophys Acta. 2012;1819(9–10):1098–106. doi: 10.1016/j.bbagrm.2011.11.007 22172993.
25. Mach J, Poliak P, Matuskova A, Zarsky V, Janata J, Lukes J, et al. An advanced system of the mitochondrial processing peptidase and core protein family in Trypanosoma brucei and multiple origins of the core I subunit in eukaryotes. Genome Biol Evol. 2013;5(5):860–75. doi: 10.1093/gbe/evt056 23563972; PubMed Central PMCID: PMC3673636.
26. Ceylan S, Seidel V, Ziebart N, Berndt C, Dirdjaja N, Krauth-Siegel RL. The dithiol glutaredoxins of African trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism. J Biol Chem. 2010;285(45):35224–37. doi: 10.1074/jbc.M110.165860 20826822; PubMed Central PMCID: PMC2966136.
27. Roldan A, Comini MA, Crispo M, Krauth-Siegel RL. Lipoamide dehydrogenase is essential for both bloodstream and procyclic Trypanosoma brucei. Molecular microbiology. 2011;81(3):623–39. doi: 10.1111/j.1365-2958.2011.07721.x 21631607.
28. Bohringer S, Hecker H. Quantitative ultrastructural investigations of the life cycle of Trypanosoma brucei: a morphometric analysis. J Protozool. 1975;22(4):463–7. doi: 10.1111/j.1550-7408.1975.tb05210.x 1195156.
29. Manta B, Pavan C, Sturlese M, Medeiros A, Crispo M, Berndt C, et al. Iron-sulfur cluster binding by mitochondrial monothiol glutaredoxin-1 of Trypanosoma brucei: molecular basis of iron-sulfur cluster coordination and relevance for parasite infectivity. Antioxid Redox Signal. 2013;19(7):665–82. doi: 10.1089/ars.2012.4859 23259530; PubMed Central PMCID: PMC3739951.
30. Bonilla M, Krull E, Irigoin F, Salinas G, Comini MA. Selenoproteins of African trypanosomes are dispensable for parasite survival in a mammalian host. Molecular and biochemical parasitology. 2016;206(1–2):13–9. doi: 10.1016/j.molbiopara.2016.03.002 26975431.
31. Mansfield JM, Paulnock DM. Regulation of innate and acquired immunity in African trypanosomiasis. Parasite immunology. 2005;27(10–11):361–71. doi: 10.1111/j.1365-3024.2005.00791.x 16179030.
32. Chen Y, Hung CH, Burderer T, Lee GS. Development of RNA interference revertants in Trypanosoma brucei cell lines generated with a double stranded RNA expression construct driven by two opposing promoters. Molecular and biochemical parasitology. 2003;126(2):275–9. doi: 10.1016/s0166-6851(02)00276-1 12615326.
33. Comini MA, Guerrero SA, Haile S, Menge U, Lunsdorf H, Flohe L. Validation of Trypanosoma brucei trypanothione synthetase as drug target. Free Radic Biol Med. 2004;36(10):1289–302. doi: 10.1016/j.freeradbiomed.2004.02.008 15110394.
34. Sienkiewicz N, Ong HB, Fairlamb AH. Trypanosoma brucei pteridine reductase 1 is essential for survival in vitro and for virulence in mice. Molecular microbiology. 2010;77(3):658–71. doi: 10.1111/j.1365-2958.2010.07236.x 20545846; PubMed Central PMCID: PMC2916222.
35. Schlecker T, Schmidt A, Dirdjaja N, Voncken F, Clayton C, Krauth-Siegel RL. Substrate specificity, localization, and essential role of the glutathione peroxidase-type tryparedoxin peroxidases in Trypanosoma brucei. J Biol Chem. 2005;280(15):14385–94. doi: 10.1074/jbc.M413338200 15664987.
36. Goldshmidt H, Matas D, Kabi A, Carmi S, Hope R, Michaeli S. Persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in Trypanosoma brucei. PLoS Pathog. 2010;6(1):e1000731. doi: 10.1371/journal.ppat.1000731 20107599; PubMed Central PMCID: PMC2809764.
37. Lee S, Min KT. The interface between ER and Mitochondria: Molecular compositions and functions. Mol Cells. 2018;41(12):1000–7. doi: 10.14348/molcells.2018.0438 30590907; PubMed Central PMCID: PMC6315321.
38. Liu I, Bogacz M, Schaffroth C, Dirdjaja N, Krauth-Siegel RL. Catalytic properties, localization, and in vivo role of Px IV, a novel tryparedoxin peroxidase of Trypanosoma brucei. Molecular and biochemical parasitology. 2016;207(2):84–8. doi: 10.1016/j.molbiopara.2016.05.013 27262262.
39. Tetaud E, Giroud C, Prescott AR, Parkin DW, Baltz D, Biteau N, et al. Molecular characterisation of mitochondrial and cytosolic trypanothione-dependent tryparedoxin peroxidases in Trypanosoma brucei. Molecular and biochemical parasitology. 2001;116(2):171–83. doi: 10.1016/s0166-6851(01)00320-6 11522350.
40. Budde H, Flohe L, Hecht HJ, Hofmann B, Stehr M, Wissing J, et al. Kinetics and redox-sensitive oligomerisation reveal negative subunit cooperativity in tryparedoxin peroxidase of Trypanosoma brucei brucei. Biological chemistry. 2003;384(4):619–33. doi: 10.1515/BC.2003.069 12751791.
41. Cocheme HM, Murphy MP. Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem. 2008;283(4):1786–98. doi: 10.1074/jbc.M708597200 18039652.
42. Nikiforova AB, Saris NE, Kruglov AG. External mitochondrial NADH-dependent reductase of redox cyclers: VDAC1 or Cyb5R3? Free Radic Biol Med. 2014;74:74–84. doi: 10.1016/j.freeradbiomed.2014.06.005 24945955.
43. Berndt C, Hudemann C, Hanschmann EM, Axelsson R, Holmgren A, Lillig CH. How does iron-sulfur cluster coordination regulate the activity of human glutaredoxin 2? Antioxid Redox Signal. 2007;9(1):151–7. doi: 10.1089/ars.2007.9.151 17115894.
44. Bisio H, Bonilla M, Manta B, Grana M, Salzman V, Aguilar PS, et al. A New Class of Thioredoxin-Related Protein Able to Bind Iron-Sulfur Clusters. Antioxid Redox Signal. 2015. doi: 10.1089/ars.2015.6377 26381228.
45. Comini MA, Rettig J, Dirdjaja N, Hanschmann EM, Berndt C, Krauth-Siegel RL. Monothiol glutaredoxin-1 is an essential iron-sulfur protein in the mitochondrion of African trypanosomes. J Biol Chem. 2008;283(41):27785–98. doi: 10.1074/jbc.M802010200 18669638.
46. Kim HJ, Lee KL, Kim KD, Roe JH. The iron uptake repressor Fep1 in the fission yeast binds Fe-S cluster through conserved cysteines. Biochemical and biophysical research communications. 2016;478(1):187–92. doi: 10.1016/j.bbrc.2016.07.070 27444384.
47. Holmgren A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem. 1979;254(19):9627–32. 385588.
48. Leustek T, Dalie B, Amir-Shapira D, Brot N, Weissbach H. A member of the Hsp70 family is localized in mitochondria and resembles Escherichia coli DnaK. Proc Natl Acad Sci U S A. 1989;86(20):7805–8. doi: 10.1073/pnas.86.20.7805 2682628; PubMed Central PMCID: PMC298159.
49. Hoffmann JH, Linke K, Graf PC, Lilie H, Jakob U. Identification of a redox-regulated chaperone network. The EMBO journal. 2004;23(1):160–8. doi: 10.1038/sj.emboj.7600016 14685279; PubMed Central PMCID: PMC1271656.
50. Graf PC, Martinez-Yamout M, VanHaerents S, Lilie H, Dyson HJ, Jakob U. Activation of the redox-regulated chaperone Hsp33 by domain unfolding. J Biol Chem. 2004;279(19):20529–38. doi: 10.1074/jbc.M401764200 15023991.
51. Teixeira F, Castro H, Cruz T, Tse E, Koldewey P, Southworth DR, et al. Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum. Proc Natl Acad Sci U S A. 2015;112(7):E616–24. doi: 10.1073/pnas.1419682112 25646478; PubMed Central PMCID: PMC4343147.
52. Musci G, Metz GD, Tsunematsu H, Berliner LJ. 4,4'-Bis[8-(phenylamino)naphthalene-1-sulfonate] binding to human thrombins: a sensitive exo site fluorescent affinity probe. Biochemistry. 1985;24(8):2034–9. doi: 10.1021/bi00329a035 4016098.
53. Pena-Diaz P, Mach J, Kriegova E, Poliak P, Tachezy J, Lukes J. Trypanosomal mitochondrial intermediate peptidase does not behave as a classical mitochondrial processing peptidase. PLoS One. 2018;13(4):e0196474. doi: 10.1371/journal.pone.0196474 29698456; PubMed Central PMCID: PMC5919513.
54. Cavadini P, Adamec J, Taroni F, Gakh O, Isaya G. Two-step processing of human frataxin by mitochondrial processing peptidase. Precursor and intermediate forms are cleaved at different rates. J Biol Chem. 2000;275(52):41469–75. doi: 10.1074/jbc.M006539200 11020385.
55. Kaurov I, Vancova M, Schimanski B, Cadena LR, Heller J, Bily T, et al. The Diverged Trypanosome MICOS Complex as a Hub for Mitochondrial Cristae Shaping and Protein Import. Curr Biol. 2018;28(21):3393–407 e5. doi: 10.1016/j.cub.2018.09.008 30415698.
56. Molina-Navarro MM, Casas C, Piedrafita L, Belli G, Herrero E. Prokaryotic and eukaryotic monothiol glutaredoxins are able to perform the functions of Grx5 in the biogenesis of Fe/S clusters in yeast mitochondria. FEBS Lett. 2006;580(9):2273–80. doi: 10.1016/j.febslet.2006.03.037 16566929.
57. Brautigam L, Johansson C, Kubsch B, McDonough MA, Bill E, Holmgren A, et al. An unusual mode of iron-sulfur-cluster coordination in a teleost glutaredoxin. Biochemical and biophysical research communications. 2013;436(3):491–6. doi: 10.1016/j.bbrc.2013.05.132 23756812.
58. Lee JR, Lee SS, Jang HH, Lee YM, Park JH, Park SC, et al. Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX. Proc Natl Acad Sci U S A. 2009;106(14):5978–83. doi: 10.1073/pnas.0811231106 19293385; PubMed Central PMCID: PMC2667072.
59. Kern R, Malki A, Holmgren A, Richarme G. Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem J. 2003;371(Pt 3):965–72. doi: 10.1042/BJ20030093 12549977; PubMed Central PMCID: PMC1223331.
60. Du H, Kim S, Hur YS, Lee MS, Lee SH, Cheon CI. A cytosolic thioredoxin acts as a molecular chaperone for peroxisome matrix proteins as well as antioxidant in peroxisome. Mol Cells. 2015;38(2):187–94. doi: 10.14348/molcells.2015.2255 26013260; PubMed Central PMCID: PMC4332030.
61. Schmidt M, Klimentova J, Rehulka P, Straskova A, Spidlova P, Szotakova B, et al. Francisella tularensis subsp. holarctica DsbA homologue: a thioredoxin-like protein with chaperone function. Microbiology. 2013;159(Pt 11):2364–74. doi: 10.1099/mic.0.070516-0 24014665.
62. Castro H, Teixeira F, Romao S, Santos M, Cruz T, Florido M, et al. Leishmania mitochondrial peroxiredoxin plays a crucial peroxidase-unrelated role during infection: insight into its novel chaperone activity. PLoS Pathog. 2011;7(10):e1002325. doi: 10.1371/journal.ppat.1002325 22046130; PubMed Central PMCID: PMC3203189.
63. Teixeira F, Tse E, Castro H, Makepeace KAT, Meinen BA, Borchers CH, et al. Chaperone activation and client binding of a 2-cysteine peroxiredoxin. Nat Commun. 2019;10(1):659. doi: 10.1038/s41467-019-08565-8 30737390; PubMed Central PMCID: PMC6368585.
64. Bentley SJ, Jamabo M, Boshoff A. The Hsp70/J-protein machinery of the African trypanosome, Trypanosoma brucei. Cell Stress Chaperones. 2018. doi: 10.1007/s12192-018-0950-x 30506377.
65. Voth W, Jakob U. Stress-Activated Chaperones: A First Line of Defense. Trends in biochemical sciences. 2017;42(11):899–913. doi: 10.1016/j.tibs.2017.08.006 28893460; PubMed Central PMCID: PMC5659914.
66. Rassow J, Maarse AC, Krainer E, Kubrich M, Muller H, Meijer M, et al. Mitochondrial protein import: biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44. The Journal of cell biology. 1994;127(6 Pt 1):1547–56. doi: 10.1083/jcb.127.6.1547 7798311; PubMed Central PMCID: PMC2120292.
67. Pfanner N, Warscheid B, Wiedemann N. Mitochondrial proteins: from biogenesis to functional networks. Nat Rev Mol Cell Biol. 2019;20(5):267–84. doi: 10.1038/s41580-018-0092-0 30626975.
68. Wilkening A, Rub C, Sylvester M, Voos W. Analysis of heat-induced protein aggregation in human mitochondria. J Biol Chem. 2018;293(29):11537–52. doi: 10.1074/jbc.RA118.002122 29895621; PubMed Central PMCID: PMC6065183.
69. Fueller F, Jehle B, Putzker K, Lewis JD, Krauth-Siegel RL. High throughput screening against the peroxidase cascade of African trypanosomes identifies antiparasitic compounds that inactivate tryparedoxin. J Biol Chem. 2012;287(12):8792–802. doi: 10.1074/jbc.M111.338285 22275351; PubMed Central PMCID: PMC3308743.
70. Biebinger S, Wirtz LE, Lorenz P, Clayton C. Vectors for inducible expression of toxic gene products in bloodstream and procyclic Trypanosoma brucei. Molecular and biochemical parasitology. 1997;85(1):99–112. doi: 10.1016/s0166-6851(96)02815-0 9108552.
71. Alsford S, Horn D. Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei. Molecular and biochemical parasitology. 2008;161(1):76–9. doi: 10.1016/j.molbiopara.2008.05.006 18588918; PubMed Central PMCID: PMC3828046.
72. Redmond S, Vadivelu J, Field MC. RNAit: an automated web-based tool for the selection of RNAi targets in Trypanosoma brucei. Molecular and biochemical parasitology. 2003;128(1):115–8. doi: 10.1016/s0166-6851(03)00045-8 12706807.
73. Schumann Burkard G, Jutzi P, Roditi I. Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Molecular and biochemical parasitology. 2011;175(1):91–4. doi: 10.1016/j.molbiopara.2010.09.002 20851719.
74. van den Berg S, Lofdahl PA, Hard T, Berglund H. Improved solubility of TEV protease by directed evolution. Journal of biotechnology. 2006;121(3):291–8. doi: 10.1016/j.jbiotec.2005.08.006 16150509.
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 9
- Stillova choroba: vzácné a závažné systémové onemocnění
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Is reliance on an inaccurate genome sequence sabotaging your experiments?
- The molecular clock of Mycobacterium tuberculosis
- Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancester of CH235 lineage CD4bs broadly neutralizing antibodies
- HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11