#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Phospho-regulation of the Shugoshin - Condensin interaction at the centromere in budding yeast


Autoři: Galal Yahya Metwaly aff001;  Yehui Wu aff003;  Karolina Peplowska aff003;  Jennifer Röhrl aff003;  Young-Min Soh aff005;  Frank Bürmann aff006;  Stephan Gruber aff005;  Zuzana Storchova aff002;  Galal Yahya aff001
Působiště autorů: Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, Egypt aff001;  Department of Microbiology and Immunology School of Pharmacy, Zagazig University, Egypt aff001;  Department of Molecular Genetics, TU Kaiserlautern, Kaiserslautern, Germany aff002;  Max Planck Institute of Biochemistry, Martinsried, Germany aff003;  Genomics and Bioinformatics Shared Resource, University of Hawaii Cancer Center, Honolulu, United States of America aff004;  Department of Fundamental Microbiology, UNIL-Sorge District, Lausanne, Switzerland aff005;  MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom aff006
Vyšlo v časopise: Phospho-regulation of the Shugoshin - Condensin interaction at the centromere in budding yeast. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008569
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008569

Souhrn

Correct bioriented attachment of sister chromatids to the mitotic spindle is essential for chromosome segregation. In budding yeast, the conserved protein shugoshin (Sgo1) contributes to biorientation by recruiting the protein phosphatase PP2A-Rts1 and the condensin complex to centromeres. Using peptide prints, we identified a Serine-Rich Motif (SRM) of Sgo1 that mediates the interaction with condensin and is essential for centromeric condensin recruitment and the establishment of biorientation. We show that the interaction is regulated via phosphorylation within the SRM and we determined the phospho-sites using mass spectrometry. Analysis of the phosphomimic and phosphoresistant mutants revealed that SRM phosphorylation disrupts the shugoshin–condensin interaction. We present evidence that Mps1, a central kinase in the spindle assembly checkpoint, directly phosphorylates Sgo1 within the SRM to regulate the interaction with condensin and thereby condensin localization to centromeres. Our findings identify novel mechanisms that control shugoshin activity at the centromere in budding yeast.

Klíčová slova:

Centromeres – Chromosome structure and function – Immunoblotting – Mitosis – Phosphorylation – Saccharomyces cerevisiae – Yeast


Zdroje

1. Indjeian VB, Murray AW. Budding yeast mitotic chromosomes have an intrinsic bias to biorient on the spindle. Curr Biol. 2007;17(21):1837–46. doi: 10.1016/j.cub.2007.09.056 17980598

2. Magidson V, Paul R, Yang N, Ault JG, O'Connell CB, Tikhonenko I, et al. Adaptive changes in the kinetochore architecture facilitate proper spindle assembly. Nat Cell Biol. 2015;17(9):1134–44. doi: 10.1038/ncb3223 26258631

3. Godek KM, Kabeche L, Compton DA. Regulation of kinetochore-microtubule attachments through homeostatic control during mitosis. Nat Rev Mol Cell Biol. 2015;16(1):57–64. doi: 10.1038/nrm3916 25466864

4. Musacchio A. The Molecular Biology of Spindle Assembly Checkpoint Signaling Dynamics. Curr Biol. 2015;25(20):R1002–18. doi: 10.1016/j.cub.2015.08.051 26485365

5. Marston AL. Shugoshins: tension-sensitive pericentromeric adaptors safeguarding chromosome segregation. Mol Cell Biol. 2015;35(4):634–48. doi: 10.1128/MCB.01176-14 25452306

6. Kitajima TS, Kawashima SA, Watanabe Y. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature. 2004;427(6974):510–7. doi: 10.1038/nature02312 14730319

7. McGuinness BE, Hirota T, Kudo NR, Peters JM, Nasmyth K. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol. 2005;3(3):e86. doi: 10.1371/journal.pbio.0030086 15737064

8. Tang Z, Shu H, Qi W, Mahmood NA, Mumby MC, Yu H. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev Cell. 2006;10(5):575–85. doi: 10.1016/j.devcel.2006.03.010 16580887

9. Kawashima SA, Yamagishi Y, Honda T, Ishiguro K, Watanabe Y. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science. 2010;327(5962):172–7. doi: 10.1126/science.1180189 19965387

10. Storchova Z, Becker JS, Talarek N, Kogelsberger S, Pellman D. Bub1, Sgo1, and Mps1 mediate a distinct pathway for chromosome biorientation in budding yeast. Mol Biol Cell. 2011;22(9):1473–85. doi: 10.1091/mbc.E10-08-0673 21389114

11. Xu Z, Cetin B, Anger M, Cho US, Helmhart W, Nasmyth K, et al. Structure and function of the PP2A-shugoshin interaction. Molecular cell. 2009;35(4):426–41. doi: 10.1016/j.molcel.2009.06.031 19716788

12. Nerusheva OO, Galander S, Fernius J, Kelly D, Marston AL. Tension-dependent removal of pericentromeric shugoshin is an indicator of sister chromosome biorientation. Genes Dev. 2014;28(12):1291–309. doi: 10.1101/gad.240291.114 24939933

13. Eshleman HD, Morgan DO. Sgo1 recruits PP2A to chromosomes to ensure sister chromatid bi-orientation during mitosis. J Cell Sci. 2014;127(Pt 22):4974–83. doi: 10.1242/jcs.161273 25236599

14. Peplowska K, Wallek AU, Storchova Z. Sgo1 regulates both condensin and Ipl1/Aurora B to promote chromosome biorientation. PLoS Genet. 2014;10(6):e1004411. doi: 10.1371/journal.pgen.1004411 24945276

15. Campbell CS, Desai A. Tension sensing by Aurora B kinase is independent of survivin-based centromere localization. Nature. 2013;497(7447):118–21. doi: 10.1038/nature12057 23604256

16. Verzijlbergen KF, Nerusheva OO, Kelly D, Kerr A, Clift D, de Lima Alves F, et al. Shugoshin biases chromosomes for biorientation through condensin recruitment to the pericentromere. Elife. 2014;3:e01374. doi: 10.7554/eLife.01374 24497542

17. Jin F, Liu H, Li P, Yu H-G, Wang Y. Loss of Function of the Cik1/Kar3 Motor Complex Results in Chromosomes with Syntelic Attachment That Are Sensed by the Tension Checkpoint. PLOS Genetics. 2012;8(2):e1002492. doi: 10.1371/journal.pgen.1002492 22319456

18. Vaur S, Cubizolles F, Plane G, Genier S, Rabitsch PK, Gregan J, et al. Control of Shugoshin function during fission-yeast meiosis. Curr Biol. 2005;15(24):2263–70. doi: 10.1016/j.cub.2005.11.034 16360688

19. Tanno Y, Kitajima TS, Honda T, Ando Y, Ishiguro K, Watanabe Y. Phosphorylation of mammalian Sgo2 by Aurora B recruits PP2A and MCAK to centromeres. Genes Dev. 2010;24(19):2169–79. doi: 10.1101/gad.1945310 20889715

20. Liu H, Rankin S, Yu H. Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat Cell Biol. 2013;15(1):40–9. doi: 10.1038/ncb2637 23242214

21. Arguello-Miranda O, Zagoriy I, Mengoli V, Rojas J, Jonak K, Oz T, et al. Casein Kinase 1 Coordinates Cohesin Cleavage, Gametogenesis, and Exit from M Phase in Meiosis II. Dev Cell. 2017;40(1):37–52. doi: 10.1016/j.devcel.2016.11.021 28017619

22. Jones MH, Huneycutt BJ, Pearson CG, Zhang C, Morgan G, Shokat K, et al. Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis. Curr Biol. 2005;15(2):160–5. doi: 10.1016/j.cub.2005.01.010 15668173

23. Stephens AD, Haase J, Vicci L, Taylor RM 2nd, Cohesin Bloom K., condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. J Cell Biol. 2011;193(7):1167–80. doi: 10.1083/jcb.201103138 21708976

24. Kruitwagen T, Chymkowitch P, Denoth-Lippuner A, Enserink J, Barral Y. Centromeres License the Mitotic Condensation of Yeast Chromosome Arms. Cell. 2018;175(3):780–95 e15.

25. Stephens AD, Haggerty RA, Vasquez PA, Vicci L, Snider CE, Shi F, et al. Pericentric chromatin loops function as a nonlinear spring in mitotic force balance. J Cell Biol. 2013;200(6):757–72. doi: 10.1083/jcb.201208163 23509068

26. Zapata J, Dephoure N, Macdonough T, Yu Y, Parnell EJ, Mooring M, et al. PP2ARts1 is a master regulator of pathways that control cell size. J Cell Biol. 2014;204(3):359–76. doi: 10.1083/jcb.201309119 24493588

27. Wang X, Bajaj R, Bollen M, Peti W, Page R. Expanding the PP2A Interactome by Defining a B56-Specific SLiM. Structure. 2016;24(12):2174–81. doi: 10.1016/j.str.2016.09.010 27998540

28. Brandt O, Feldner J, Stephan A, Schroder M, Schnolzer M, Arlinghaus HF, et al. PNA microarrays for hybridisation of unlabelled DNA samples. Nucleic Acids Res. 2003;31(19):e119. doi: 10.1093/nar/gng120 14500847

29. Gnad F, de Godoy LM, Cox J, Neuhauser N, Ren S, Olsen JV, et al. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics. 2009;9(20):4642–52. doi: 10.1002/pmic.200900144 19795423


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 8
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#