A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein
Autoři:
Meredith H. Wilson aff001; Sujith Rajan aff002; Aidan Danoff aff001; Richard J. White aff004; Monica R. Hensley aff001; Vanessa H. Quinlivan aff001; Rosario Recacha aff006; James H. Thierer aff001; Frederick J. Tan aff001; Elisabeth M. Busch-Nentwich aff004; Lloyd Ruddock aff006; M. Mahmood Hussain aff002; Steven A. Farber aff001
Působiště autorů:
Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
aff001; New York University Long Island School of Medicine, Mineola, New York, United States of America
aff002; Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
aff003; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
aff004; Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
aff005; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
aff006
Vyšlo v časopise:
A point mutation decouples the lipid transfer activities of microsomal triglyceride transfer protein. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008941
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008941
Souhrn
Apolipoprotein B-containing lipoproteins (B-lps) are essential for the transport of hydrophobic dietary and endogenous lipids through the circulation in vertebrates. Zebrafish embryos produce large numbers of B-lps in the yolk syncytial layer (YSL) to move lipids from yolk to growing tissues. Disruptions in B-lp production perturb yolk morphology, readily allowing for visual identification of mutants with altered B-lp metabolism. Here we report the discovery of a missense mutation in microsomal triglyceride transfer protein (Mtp), a protein that is essential for B-lp production. This mutation of a conserved glycine residue to valine (zebrafish G863V, human G865V) reduces B-lp production and results in yolk opacity due to aberrant accumulation of cytoplasmic lipid droplets in the YSL. However, this phenotype is milder than that of the previously reported L475P stalactite (stl) mutation. MTP transfers lipids, including triglycerides and phospholipids, to apolipoprotein B in the ER for B-lp assembly. In vitro lipid transfer assays reveal that while both MTP mutations eliminate triglyceride transfer activity, the G863V mutant protein unexpectedly retains ~80% of phospholipid transfer activity. This residual phospholipid transfer activity of the G863V mttp mutant protein is sufficient to support the secretion of small B-lps, which prevents intestinal fat malabsorption and growth defects observed in the mttpstl/stl mutant zebrafish. Modeling based on the recent crystal structure of the heterodimeric human MTP complex suggests the G865V mutation may block triglyceride entry into the lipid-binding cavity. Together, these data argue that selective inhibition of MTP triglyceride transfer activity may be a feasible therapeutic approach to treat dyslipidemia and provide structural insight for drug design. These data also highlight the power of yolk transport studies to identify proteins critical for B-lp biology.
Klíčová slova:
Embryos – Fatty liver – Gastrointestinal tract – Immunoprecipitation – Lipids – Lipoproteins – Missense mutation – Zebrafish
Zdroje
1. Babin PJ, Vernier JM. Plasma lipoproteins in fish. J Lipid Res. 1989;30(4):467–89. 2666541
2. Van der Horst DJ, Roosendaal SD, Rodenburg KW. Circulatory lipid transport: lipoprotein assembly and function from an evolutionary perspective. Mol Cell Biochem. 2009;326((1–2)):105–19. doi: 10.1007/s11010-008-0011-3 19130182
3. Chapman MJ. Animal lipoproteins: chemistry, structure, and comparative aspects. J Lipid Res. 1980;21(7):789–853. 7003040
4. Schumaker VN, Phillips ML, Chatterton JE. Apolipoprotein B and low-density lipoprotein structure: implications for biosynthesis of triglyceride-rich lipoproteins. Adv Protein Chem. 1994;45:205–48. doi: 10.1016/s0065-3233(08)60641-5 8154370
5. Hussain MM, Kancha RK, Zhou Z, Luchoomun J, Zu H, Bakillah A. Chylomicron assembly and catabolism: role of apolipoproteins and receptors. Biochim Biophys Acta. 1996;1300(3):151–70. doi: 10.1016/0005-2760(96)00041-0 8679680
6. Gage SHF P.A. Fat digestion, absorption, and assimilation in man and animals as determined by the dark-field microscope, and a fat-soluble dye. American Journal of Anatomy. 1924;34(1):1–85.
7. Kane JP. Apolipoprotein B: Structural and metabolic heterogeneity. Ann Rev Physiol. 1993;45:637–50.
8. Davis RA. Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver. Biochim Biophys Acta. 1999;1440:1–31. doi: 10.1016/s1388-1981(99)00083-9 10477822
9. Wetterau JR, Zilversmit DB. Localization of intracellular triacylglycerol and cholesteryl ester transfer activity in rat tissues. Biochim Biophys Acta. 1986;875(3):610–7. doi: 10.1016/0005-2760(86)90084-6 3511967
10. Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res. 2003;44(1):22–32. doi: 10.1194/jlr.r200014-jlr200 12518019
11. Patel SB, Grundy SM. Interactions between microsomal triglyceride transfer protein and apolipoprotein B within the endoplasmic reticulum in a heterologous expression system. J Biol Chem. 1996;271(31):18686–94. doi: 10.1074/jbc.271.31.18686 8702523
12. Wu X, Zhou M, Huang LS, Wetterau J, Ginsberg HN. Demonstration of a physical interaction between microsomal triglyceride transfer protein and apolipoprotein B during the assembly of ApoB-containing lipoproteins. J Biol Chem. 1996;271(17):10277–81. doi: 10.1074/jbc.271.17.10277 8626595
13. Bradbury P, Mann CJ, Kochl S, Anderson TA, Chester SA, Hancock JM, et al. A common binding site on the microsomal triglyceride transfer protein for apolipoprotein B and protein disulfide isomerase. J Biol Chem. 1999;274(5):3159–64. doi: 10.1074/jbc.274.5.3159 9915855
14. Tiwari S, Siddiqi SA. Intracellular trafficking and secretion of very low density lipoproteins. Arterioscler Thromb Vasc Biol. 2012;32(5):1079–86. doi: 10.1161/ATVBAHA.111.241471 22517366
15. Wetterau JR, Combs KA, Spinner SN, Joiner BJ. Protein disulfide isomerase is a component of the microsomal triglyceride transfer protein complex. J Biol Chem. 1990;265(17):9800–7. 2351674
16. Biterova EI, Isupov MN, Keegan RM, Lebedev AA, Sohail AA, Liaqat I, et al. The crystal structure of human microsomal triglyceride transfer protein. Proc Natl Acad Sci U S A. 2019;116(35):17251–60. doi: 10.1073/pnas.1903029116 31395737
17. Wetterau JR, Zilversmit DB. A triglyceride and cholesteryl ester transfer protein associated with liver microsomes. J Biol Chem. 1984;259(17):10863–6. 6469986
18. Wetterau JR, Zilversmit DB. Purification and characterization of microsomal triglyceride and cholesteryl ester transfer protein from bovine liver microsomes. Chem Phys Lipids. 1985;38(1–2):205–22. doi: 10.1016/0009-3084(85)90068-4 4064222
19. Athar H, Iqbal J, Jiang XC, Hussain MM. A simple, rapid, and sensitive fluorescence assay for microsomal triglyceride transfer protein. J Lipid Res. 2004;45(4):764–72. doi: 10.1194/jlr.D300026-JLR200 14754905
20. Rava P, Athar H, Johnson C, Hussain MM. Transfer of cholesteryl esters and phospholipids as well as net deposition by microsomal triglyceride transfer protein. J Lipid Res. 2005;46(8):1779–85. doi: 10.1194/jlr.D400043-JLR200 15897609
21. Jamil H, Dickson JK Jr., Chu CH, Lago MW, Rinehart JK, Biller SA, et al. Microsomal triglyceride transfer protein. Specificity of lipid binding and transport. J Biol Chem. 1995;270(12):6549–54. doi: 10.1074/jbc.270.12.6549 7896791
22. Iqbal J, Walsh MT, Hammad SM, Cuchel M, Tarugi P, Hegele RA, et al. Microsomal Triglyceride Transfer Protein Transfers and Determines Plasma Concentrations of Ceramide and Sphingomyelin but Not Glycosylceramide. J Biol Chem. 2015;290(43):25863–75. doi: 10.1074/jbc.M115.659110 26350457
23. Atzel A, Wetterau JR. Identification of two classes of lipid molecule binding sites on the microsomal triglyceride transfer protein. Biochemistry. 1994;33(51):15382–8. doi: 10.1021/bi00255a019 7803401
24. Atzel A, Wetterau JR. Mechanism of microsomal triglyceride transfer protein catalyzed lipid transport. Biochemistry. 1993;32(39):10444–50. doi: 10.1021/bi00090a021 8399189
25. Wetterau JR, Aggerbeck LP, Bouma ME, Eisenberg C, Munck A, Hermier M, et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science. 1992;258(5084):999–1001. doi: 10.1126/science.1439810 1439810
26. Sharp D, Blinderman L, Combs KA, Kienzle B, Ricci B, Wager-Smith K, et al. Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature. 1993;365(6441):65–9. doi: 10.1038/365065a0 8361539
27. Shoulders CC, Brett DJ, Bayliss JD, Narcisi TM, Jarmuz A, Grantham TT, et al. Abetalipoproteinemia is caused by defects of the gene encoding the 97 kDa subunit of a microsomal triglyceride transfer protein. Hum Mol Genet. 1993;2(12):2109–16. doi: 10.1093/hmg/2.12.2109 8111381
28. Kane JPH, J R. Disorders of the biogenesis and secretion of lipoproteins containing the B apolipoproteins. In: C. R. Scriver ALB, Sly W. S. and Valle D., editor. The metabolic and molecular bases of inherited disorders. New York: McGraw-Hill, Inc.; 1995. p. 1853–85.
29. Lee J, Hegele RA. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: a framework for diagnosis and management. J Inherit Metab Dis. 2014;37(3):333–9. doi: 10.1007/s10545-013-9665-4 24288038
30. Walsh MT, Hussain MM. Targeting microsomal triglyceride transfer protein and lipoprotein assembly to treat homozygous familial hypercholesterolemia. Crit Rev Clin Lab Sci. 2017;54(1):26–48. doi: 10.1080/10408363.2016.1221883 27690713
31. Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161–72. doi: 10.1016/j.cell.2015.01.036 25815993
32. The Emerging Risk Factors C. Major Lipids, Apolipoproteins, and Risk of Vascular Disease. JAMA. 2009;302(18):1993–2000. doi: 10.1001/jama.2009.1619 19903920
33. Mani-Ponset L, Guyot E, Diaz J, Connes R. Utilization of yolk reserves during post-embryonic development in three teleostean species: the sea bream Sparus aurata, the sea bass Dicentrarchus labrax, and the pike-perch Stizostedion lucioperca. Marine Biology. 1996;126(3):539–47.
34. Vernier J, Sire M. Lipoprotéines de très basse densité et glycogène dans le syncytium vitellin, l'épithélium intestinal et le foie, aux stades précoces du développement embryonnaire chez la truite arc-en-ciel. Biol cell. 1977;29:45–54.
35. Poupard G, André M, Durliat M, Ballagny C, Boeuf G, Babin PJ. Apolipoprotein E gene expression correlates with endogenous lipid nutrition and yolk syncytial layer lipoprotein synthesis during fish development. Cell Tissue Res. 2000;300(2):251–61. doi: 10.1007/s004419900158 10867821
36. André M, Ando S, Ballagny C, Durliat M, Poupard G, Briançon C, et al. Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis. Int J Dev Biol. 2000;44(2):249–52. 10794084
37. Hiramatsu N, Todo T, Sullivan CV, Schilling J, Reading BJ, Matsubara T, et al. Ovarian yolk formation in fishes: Molecular mechanisms underlying formation of lipid droplets and vitellogenin-derived yolk proteins. Gen Comp Endocrinol. 2015;221:9–15. doi: 10.1016/j.ygcen.2015.01.025 25660470
38. Malone TE, Hisaoka KK. A histochemical study of the formation of deuto‐plasmic components in developing oocytes of the zebrafish, Brachydanio rerio. Journal of Morphology. 1963;112(1):61–75.
39. Wallace RA, Selman K. Cellular and dynamic aspects of oocyte growth in teleosts. Amer Zool. 1981;21:325–43.
40. Fraher D, Sanigorski A, Mellett NA, Meikle PJ, Sinclair AJ, Gibert Y. Zebrafish Embryonic Lipidomic Analysis Reveals that the Yolk Cell Is Metabolically Active in Processing Lipid. Cell Rep. 2016;14(6):1317–29. doi: 10.1016/j.celrep.2016.01.016 26854233
41. Kimmel CB, Law RD. Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncytial layer. Dev Biol. 1985;108(1):86–93. doi: 10.1016/0012-1606(85)90011-9 3972183
42. Walzer C, Schonenberger N. Ultrastructure and cytochemistry study of the yolk syncytial layer in the alevin of trout (Salmo fario trutta L.) after hatching. I. The vitellolysis zone. Cell Tissue Res. 1979;196(1):59–73. doi: 10.1007/BF00236348 570459
43. Walzer C, Schonenberger N. Ultrastructure and cytochemistry of the yolk syncytial layer in the alevin of trout (Salmo fario trutta L. and Salmo gairdneri R.) after hatching. II. The cytoplasmic zone. Cell Tissue Res. 1979;196(1):75–93. doi: 10.1007/BF00236349 217540
44. Carvalho L, Heisenberg CP. The yolk syncytial layer in early zebrafish development. Trends Cell Biol. 2010;20(10):586–92. doi: 10.1016/j.tcb.2010.06.009 20674361
45. Otis JP, Zeituni EM, Thierer JH, Anderson JL, Brown AC, Boehm ED, et al. Zebrafish as a model for apolipoprotein biology: comprehensive expression analysis and a role for ApoA-IV in regulating food intake. Dis Model Mech. 2015;8(3):295–309. doi: 10.1242/dmm.018754 25633982
46. Marza E, Barthe C, Andre M, Villeneuve L, Helou C, Babin PJ. Developmental expression and nutritional regulation of a zebrafish gene homologous to mammalian microsomal triglyceride transfer protein large subunit. Dev Dyn. 2005;232(2):506–18. doi: 10.1002/dvdy.20251 15614773
47. Schlegel A, Stainier DY. Microsomal triglyceride transfer protein is required for yolk lipid utilization and absorption of dietary lipids in zebrafish larvae. Biochemistry. 2006;45(51):15179–87. doi: 10.1021/bi0619268 17176039
48. Thierer JH, Ekker SC, Farber SA. The LipoGlo reporter system for sensitive and specific monitoring of atherogenic lipoproteins. Nat Commun. 2019;10(1):3426. doi: 10.1038/s41467-019-11259-w 31366908
49. Avraham-Davidi I, Ely Y, Pham VN, Castranova D, Grunspan M, Malkinson G, et al. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nat Med. 2012;18(6):967–73. doi: 10.1038/nm.2759 22581286
50. Miyares RL, de Rezende VB, Farber SA. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipid transport and metabolism. Dis Model Mech. 2014;7(7):915–27. doi: 10.1242/dmm.015800 24812437
51. Hill JT, Demarest BL, Bisgrove BW, Gorsi B, Su YC, Yost HJ. MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res. 2013;23(4):687–97. doi: 10.1101/gr.146936.112 23299975
52. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122. doi: 10.1186/s13059-016-0974-4 27268795
53. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40(Web Server issue):W452–7. doi: 10.1093/nar/gks539 22689647
54. Raabe M, Veniant MM, Sullivan MA, Zlot CH, Bjorkegren J, Nielsen LB, et al. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue-specific knockout mice. J Clin Invest. 1999;103(9):1287–98. doi: 10.1172/JCI6576 10225972
55. Khatun I, Zeissig S, Iqbal J, Wang M, Curiel D, Shelness GS, et al. Phospholipid transfer activity of microsomal triglyceride transfer protein produces apolipoprotein B and reduces hepatosteatosis while maintaining low plasma lipids in mice. Hepatology. 2012;55(5):1356–68. doi: 10.1002/hep.25504 22121032
56. Raabe M, Flynn LM, Zlot CH, Wong JS, Veniant MM, Hamilton RL, et al. Knockout of the abetalipoproteinemia gene in mice: reduced lipoprotein secretion in heterozygotes and embryonic lethality in homozygotes. Proc Natl Acad Sci U S A. 1998;95(15):8686–91. doi: 10.1073/pnas.95.15.8686 9671739
57. Otis JP, Farber SA. High-fat Feeding Paradigm for Larval Zebrafish: Feeding, Live Imaging, and Quantification of Food Intake. J Vis Exp. 2016(116).
58. Hwang HS, Xie Y, Koudouna E, Na KS, Yoo YS, Yang SW, et al. Light transmission/absorption characteristics of the meibomian gland. Ocul Surf. 2018;16(4):448–53. doi: 10.1016/j.jtos.2018.07.001 30297027
59. Michels R, Foschum F, Kienle A. Optical properties of fat emulsions. Opt Express. 2008;16(8):5907–25. doi: 10.1364/oe.16.005907 18542702
60. Elovson J, Chatterton JE, Bell GT, Schumaker VN, Reuben MA, Puppione DL, et al. Plasma very low density lipoproteins contain a single molecule of apolipoprotein B. J Lipid Res. 1988;29(11):1461–73. 3241122
61. Wallace KN, Akhter S, Smith EM, Lorent K, Pack M. Intestinal growth and differentiation in zebrafish. Mechanisms of Development. 2005;122(2):157–73. doi: 10.1016/j.mod.2004.10.009 15652704
62. Miller SA, Burnett JR, Leonis MA, McKnight CJ, van Bockxmeer FM, Hooper AJ. Novel missense MTTP gene mutations causing abetalipoproteinemia. Biochim Biophys Acta. 2014;1842(10):1548–54. doi: 10.1016/j.bbalip.2014.08.001 25108285
63. Khatun I, Walsh MT, Hussain MM. Loss of both phospholipid and triglyceride transfer activities of microsomal triglyceride transfer protein in abetalipoproteinemia. J Lipid Res. 2013;54(6):1541–9. doi: 10.1194/jlr.M031658 23475612
64. Rava P, Hussain MM. Acquisition of triacylglycerol transfer activity by microsomal triglyceride transfer protein during evolution. Biochemistry. 2007;46(43):12263–74. doi: 10.1021/bi700762z 17924655
65. Narcisi TM, Shoulders CC, Chester SA, Read J, Brett DJ, Harrison GB, et al. Mutations of the microsomal triglyceride-transfer-protein gene in abetalipoproteinemia. Am J Hum Genet. 1995;57(6):1298–310. 8533758
66. Ricci B, Sharp D, O'Rourke E, Kienzle B, Blinderman L, Gordon D, et al. A 30-amino acid truncation of the microsomal triglyceride transfer protein large subunit disrupts its interaction with protein disulfide-isomerase and causes abetalipoproteinemia. J Biol Chem. 1995;270(24):14281–5. doi: 10.1074/jbc.270.24.14281 7782284
67. Rehberg EF, Samson-Bouma ME, Kienzle B, Blinderman L, Jamil H, Wetterau JR, et al. A novel abetalipoproteinemia genotype. Identification of a missense mutation in the 97-kDa subunit of the microsomal triglyceride transfer protein that prevents complex formation with protein disulfide isomerase. J Biol Chem. 1996;271(47):29945–52. doi: 10.1074/jbc.271.47.29945 8939939
68. Wang J, Hegele RA. Microsomal triglyceride transfer protein (MTP) gene mutations in Canadian subjects with abetalipoproteinemia. Hum Mutat. 2000;15(3):294–5.
69. Berthier MT, Couture P, Houde A, Paradis AM, Sammak A, Verner A, et al. The c.419-420insA in the MTP gene is associated with abetalipoproteinemia among French-Canadians. Mol Genet Metab. 2004;81(2):140–3. doi: 10.1016/j.ymgme.2003.11.001 14741197
70. Di Leo E, Lancellotti S, Penacchioni JY, Cefalu AB, Averna M, Pisciotta L, et al. Mutations in MTP gene in abeta- and hypobeta-lipoproteinemia. Atherosclerosis. 2005;180(2):311–8. doi: 10.1016/j.atherosclerosis.2004.12.004 15910857
71. Di Filippo M, Crehalet H, Samson-Bouma ME, Bonnet V, Aggerbeck LP, Rabes JP, et al. Molecular and functional analysis of two new MTTP gene mutations in an atypical case of abetalipoproteinemia. J Lipid Res. 2012;53(3):548–55. doi: 10.1194/jlr.M020024 22236406
72. Walsh MT, Iqbal J, Josekutty J, Soh J, Di Leo E, Ozaydin E, et al. Novel Abetalipoproteinemia Missense Mutation Highlights the Importance of the N-Terminal beta-Barrel in Microsomal Triglyceride Transfer Protein Function. Circ Cardiovasc Genet. 2015;8(5):677–87. doi: 10.1161/CIRCGENETICS.115.001106 26224785
73. Walsh MT, Di Leo E, Okur I, Tarugi P, Hussain MM. Structure-function analyses of microsomal triglyceride transfer protein missense mutations in abetalipoproteinemia and hypobetalipoproteinemia subjects. Biochim Biophys Acta. 2016;1861(11):1623–33. doi: 10.1016/j.bbalip.2016.07.015 27487388
74. Dougan SK, Salas A, Rava P, Agyemang A, Kaser A, Morrison J, et al. Microsomal triglyceride transfer protein lipidation and control of CD1d on antigen-presenting cells. J Exp Med. 2005;202(4):529–39. doi: 10.1084/jem.20050183 16087713
75. Alexander CA, Hamilton RL, Havel RJ. Subcellular localization of B apoprotein of plasma lipoproteins in rat liver. J Cell Biol. 1976;69(2):241–63. doi: 10.1083/jcb.69.2.241 177430
76. Hamilton RL, Wong JS, Cham CM, Nielsen LB, Young SG. Chylomicron-sized lipid particles are formed in the setting of apolipoprotein B deficiency. J Lipid Res. 1998;39(8):1543–57. 9717714
77. Wang Y, McLeod RS, Yao Z. Normal activity of microsomal triglyceride transfer protein is required for the oleate-induced secretion of very low density lipoproteins containing apolipoprotein B from McA-RH7777 cells. J Biol Chem. 1997;272(19):12272–8. doi: 10.1074/jbc.272.19.12272 9139669
78. Boren J, Rustaeus S, Olofsson SO. Studies on the assembly of apolipoprotein B-100- and B-48-containing very low density lipoproteins in McA-RH7777 cells. J Biol Chem. 1994;269(41):25879–88. 7929292
79. Kulinski A, Rustaeus S, Vance JE. Microsomal triacylglycerol transfer protein is required for lumenal accretion of triacylglycerol not associated with ApoB, as well as for ApoB lipidation. J Biol Chem. 2002;277(35):31516–25. doi: 10.1074/jbc.M202015200 12072432
80. Guo Y, Walther TC, Rao M, Sturrman N, Goshima G, Terayama K, et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature. 2008;453:657–61. doi: 10.1038/nature06928 18408709
81. Mann CJ, Anderson TA, Read J, Chester SA, Harrison GB, Kochl S, et al. The structure of vitellogenin provides a molecular model for the assembly and secretion of atherogenic lipoproteins. J Mol Biol. 1999;285(1):391–408. doi: 10.1006/jmbi.1998.2298 9878414
82. Anderson TA, Levitt DG, Banaszak LJ. The structural basis of lipid interactions in lipovitellin, a soluble lipoprotein. Structure. 1998;6(7):895–909. doi: 10.1016/s0969-2126(98)00091-4 9687371
83. Di Filippo M, Collardeau Frachon S, Janin A, Rajan S, Marmontel O, Decourt C, et al. Normal serum ApoB48 and red cells vitamin E concentrations after supplementation in a novel compound heterozygous case of abetalipoproteinemia. Atherosclerosis. 2019;284:75–82. doi: 10.1016/j.atherosclerosis.2019.02.016 30875496
84. CDC. Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999–2017 on CDC WONDER Online Database, released December, 2018. Data are from the Multiple Cause of Death Files, 1999–2017, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program.: Centers for Disease Control; 2018 [Available from: http://wonder.cdc.gov/ucd-icd10.html.
85. Wetterau JR, Gregg RE, Harrity TW, Arbeeny C, Cap M, Connolly F, et al. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science. 1998;282(5389):751–4. doi: 10.1126/science.282.5389.751 9784135
86. Jamil H, Gordon DA, Eustice DC, Brooks CM, Dickson JK Jr., Chen Y, et al. An inhibitor of the microsomal triglyceride transfer protein inhibits apoB secretion from HepG2 cells. Proc Natl Acad Sci U S A. 1996;93(21):11991–5. doi: 10.1073/pnas.93.21.11991 8876250
87. Hussain MM, Bakillah A. New approaches to target microsomal triglyceride transfer protein. Curr Opin Lipidol. 2008;19:572–8. doi: 10.1097/MOL.0b013e328312707c 18957879
88. Robl JA, Sulsky R, Sun CQ, Simpkins LM, Wang T, Dickson JK Jr., et al. A novel series of highly potent benzimidazole-based microsomal triglyceride transfer protein inhibitors. J Med Chem. 2001;44(6):851–6. doi: 10.1021/jm000494a 11300866
89. FDA. JUXTAPID TM (lomitapide) capsules, for oral use Initial U.S. Approval: 2012 2012 [Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203858s000lbl.Pdf.
90. Cuchel M, Bruckert E, Ginsberg HN, Raal FJ, Santos RD, Hegele RA, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014;35(32):2146–57. doi: 10.1093/eurheartj/ehu274 25053660
91. Cuchel M, Meagher EA, du Toit Theron H, Blom DJ, Marais AD, Hegele RA, et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet. 2013;381(9860):40–6. doi: 10.1016/S0140-6736(12)61731-0 23122768
92. Cuchel M, Bloedon LT, Szapary PO, Kolansky DM, Wolfe ML, Sarkis A, et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med. 2007;356(2):148–56. doi: 10.1056/NEJMoa061189 17215532
93. Blom DJ, Averna MR, Meagher EA, du Toit Theron H, Sirtori CR, Hegele RA, et al. Long-Term Efficacy and Safety of the Microsomal Triglyceride Transfer Protein Inhibitor Lomitapide in Patients With Homozygous Familial Hypercholesterolemia. Circulation. 2017;136(3):332–5. doi: 10.1161/CIRCULATIONAHA.117.028208 28716835
94. Rava P, Ojakian GK, Shelness GS, Hussain MM. Phospholipid transfer activity of microsomal triacylglycerol transfer protein is sufficient for the assembly and secretion of apolipoprotein B lipoproteins. J Biol Chem. 2006;281(16):11019–27. doi: 10.1074/jbc.M512823200 16478722
95. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253–310. doi: 10.1002/aja.1002030302 8589427
96. Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM. Live imaging of lymphatic development in the zebrafish. Nat Med. 2006;12(6):711–6. doi: 10.1038/nm1427 16732279
97. Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248(2):307–18. doi: 10.1006/dbio.2002.0711 12167406
98. White RJ, Collins JE, Sealy IM, Wali N, Dooley CM, Digby Z, et al. A high-resolution mRNA expression time course of embryonic development in zebrafish. Elife. 2017;6.
99. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36. doi: 10.1186/gb-2013-14-4-r36 23618408
100. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11 0 1–33. doi: 10.1002/0471250953.bi1110s43 25431634
101. Meeker ND, Hutchinson SA, Ho L, Trede NS. Method for isolation of PCR-ready genomic DNA from zebrafish tissues. Biotechniques. 2007;43(5):610, 2, 4. doi: 10.2144/000112619 18072590
102. Neff MM, Turk E, Kalishman M. Web-based primer design for single nucleotide polymorphism analysis. Trends Genet. 2002;18(12):613–5. doi: 10.1016/s0168-9525(02)02820-2 12446140
103. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn. 2007;236(11):3088–99. doi: 10.1002/dvdy.21343 17937395
104. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi: 10.1038/nmeth.2019 22743772
105. Zeituni EM, Wilson MH, Zheng X, Iglesias PA, Sepanski MA, Siddiqi MA, et al. Endoplasmic Reticulum Lipid Flux Influences Enterocyte Nuclear Morphology and Lipid-dependent Transcriptional Responses. J Biol Chem. 2016;291(45):23804–16. doi: 10.1074/jbc.M116.749358 27655916
106. Parichy DM, Elizondo MR, Mills MG, Gordon TN, Engeszer RE. Normal table of postembryonic zebrafish development: staging by externally visible anatomy of the living fish. Dev Dyn. 2009;238(12):2975–3015. doi: 10.1002/dvdy.22113 19891001
107. Hall MP, Unch J, Binkowski BF, Valley MP, Butler BL, Wood MG, et al. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol. 2012;7(11):1848–57. doi: 10.1021/cb3002478 22894855
108. Carten JD, Bradford MK, Farber SA. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish. Dev Biol. 2011;360(2):276–85. doi: 10.1016/j.ydbio.2011.09.010 21968100
109. Raivo K. pheatmap: pretty heatmaps. R package version 1.0.12. 2019.
110. R_Core_Team. R: a language and environment for statistical computing. 2019;R Foundation for Statistical Computing, Vienna, Austria.
111. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Ryoal Statistical Society Series B. 1995;57(1):289–300.
112. Sellers JA, Hou L, Athar H, Hussain MM, Shelness GS. A Drosophila microsomal triglyceride transfer protein homolog promotes the assembly and secretion of human apolipoprotein B. Implications for human and insect transport and metabolism. J Biol Chem. 2003;278(22):20367–73. doi: 10.1074/jbc.M300271200 12657646
113. Hussain MM, Zhao Y, Kancha RK, Blackhart BD, Yao Z. Characterization of recombinant human apoB-48-containing lipoproteins in rat hepatoma McA-RH7777 cells transfected with apoB-48 cDNA. Overexpression of apoB-48 decreases synthesis of endogenous apoB-100. Arterioscler Thromb Vasc Biol. 1995;15(4):485–94. doi: 10.1161/01.atv.15.4.485 7749860
114. Bakillah A, Zhou Z, Luchoomun J, Hussain MM. Measurement of apolipoprotein B in various cell lines: correlation between intracellular levels and rates of secretion. Lipids. 1997;32(10):1113–8. doi: 10.1007/s11745-997-0143-8 9358438
115. Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. doi: 10.1093/nar/gky427 29788355
116. Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;D60(pt 12 Pt 1):2126–32.
117. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 2):213–21. doi: 10.1107/S0907444909052925 20124702
118. McNicholas S, Potterton E, Wilson KS, Noble ME. Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr. 2011;67(Pt 4):386–94. doi: 10.1107/S0907444911007281 21460457
119. Mair P, Wilcox R. Robust Statistical Methods Using WRS2 2018 [Available from: https://cran.r-project.org/web/packages/WRS2/vignettes/WRS2.pdf.
120. Mangiafico SS. An R Companion for the Handbook of Biological Statistics, version 1.3.2. 2015 [Available from: https://rcompanion.org/rcompanion/d_08a.html.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 8
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- „Jednohubky“ z klinického výzkumu – 2024/44
- Je libo čepici místo mozkového implantátu?
Nejčtenější v tomto čísle
- Genomic imprinting: An epigenetic regulatory system
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans