Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development
Autoři:
Katherine I. Farley-Barnes aff001; Engin Deniz aff002; Maya M. Overton aff001; Mustafa K. Khokha aff002; Susan J. Baserga aff001
Působiště autorů:
Department of Molecular Biophysics & Biochemistry, Yale University School of Medicine, New Haven, Connecticut, United States of America
aff001; Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
aff002; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
aff003; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
aff004
Vyšlo v časopise:
Paired Box 9 (PAX9), the RNA polymerase II transcription factor, regulates human ribosome biogenesis and craniofacial development. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008967
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008967
Souhrn
Dysregulation of ribosome production can lead to a number of developmental disorders called ribosomopathies. Despite the ubiquitous requirement for these cellular machines used in protein synthesis, ribosomopathies manifest in a tissue-specific manner, with many affecting the development of the face. Here we reveal yet another connection between craniofacial development and making ribosomes through the protein Paired Box 9 (PAX9). PAX9 functions as an RNA Polymerase II transcription factor to regulate the expression of proteins required for craniofacial and tooth development in humans. We now expand this function of PAX9 by demonstrating that PAX9 acts outside of the cell nucleolus to regulate the levels of proteins critical for building the small subunit of the ribosome. This function of PAX9 is conserved to the organism Xenopus tropicalis, an established model for human ribosomopathies. Depletion of pax9 leads to craniofacial defects due to abnormalities in neural crest development, a result consistent with that found for depletion of other ribosome biogenesis factors. This work highlights an unexpected layer of how the making of ribosomes is regulated in human cells and during embryonic development.
Klíčová slova:
Biosynthesis – Messenger RNA – Northern blot – Ribosomes – Small interfering RNA – Transcription factors – Paired box – Neural crest
Zdroje
1. Altug Teber O, Gillessen-Kaesbach G, Fischer S, Bohringer S, Albrecht B, Albert A, et al. Genotyping in 46 patients with tentative diagnosis of Treacher Collins syndrome revealed unexpected phenotypic variation. Eur J Hum Genet. 2004;12(11):879–90. doi: 10.1038/sj.ejhg.5201260 15340364
2. Dauwerse JG, Dixon J, Seland S, Ruivenkamp CA, van Haeringen A, Hoefsloot LH, et al. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat Genet. 2011;43(1):20–2. doi: 10.1038/ng.724 21131976
3. Bowman M, Oldridge M, Archer C, O'Rourke A, McParland J, Brekelmans R, et al. Gross deletions in TCOF1 are a cause of Treacher-Collins-Franceschetti syndrome. Eur J Hum Genet. 2012;20(7):769–77. doi: 10.1038/ejhg.2012.2 22317976
4. Splendore A, Silva EO, Alonso LG, Richieri-Costa A, Alonso N, Rosa A, et al. High mutation detection rate in TCOF1 among Treacher Collins syndrome patients reveals clustering of mutations and 16 novel pathogenic changes. Hum Mutat. 2000;16(4):315–22. doi: 10.1002/1098-1004(200010)16:4<315::AID-HUMU4>3.0.CO;2-H 11013442
5. Rovin S, Dachi SF, Borenstein DB, Cotter WB. MANDIBULOFACIAL DYSOSTOSIS, A FAMILIAL STUDY OF FIVE GENERATIONS. J Pediatr. 1964;65:215–21. doi: 10.1016/s0022-3476(64)80522-9 14198411
6. Phelps PD, Poswillo D, Lloyd GA. The ear deformities in mandibulofacial dysostosis (Treacher Collins syndrome). Clin Otolaryngol Allied Sci. 1981;6(1):15–28. doi: 10.1111/j.1365-2273.1981.tb01782.x 7273449
7. Kadakia S, Helman SN, Badhey AK, Saman M, Ducic Y. Treacher Collins Syndrome: The genetics of a craniofacial disease. International Journal of Pediatric Otorhinolaryngology. 2014;78(6):893–8. doi: 10.1016/j.ijporl.2014.03.006 24690222
8. Jones NC, Lynn ML, Gaudenz K, Sakai D, Aoto K, Rey JP, et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nature medicine. 2008;14(2):125–33. doi: 10.1038/nm1725 18246078
9. Sloan Katherine E, Bohnsack Markus T, Watkins Nicholas J. The 5S RNP Couples p53 Homeostasis to Ribosome Biogenesis and Nucleolar Stress. Cell Reports. 2013;5(1):237–47. doi: 10.1016/j.celrep.2013.08.049 24120868
10. Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep. 2013;4(1):87–98. doi: 10.1016/j.celrep.2013.05.045 23831031
11. Glader BE, Backer K, Diamond LK. Elevated erythrocyte adenosine deaminase activity in congenital hypoplastic anemia. N Engl J Med. 1983;309(24):1486–90. doi: 10.1056/NEJM198312153092404 6646173
12. Halperin DS, Freedman MH. Diamond-blackfan anemia: etiology, pathophysiology, and treatment. Am J Pediatr Hematol Oncol. 1989;11(4):380–94. 2694854
13. Lipton JM, Ellis SR. Diamond-Blackfan anemia: diagnosis, treatment, and molecular pathogenesis. Hematol Oncol Clin North Am. 2009;23(2):261–82. doi: 10.1016/j.hoc.2009.01.004 19327583
14. Weaver KN, Watt KE, Hufnagel RB, Navajas Acedo J, Linscott LL, Sund KL, et al. Acrofacial Dysostosis, Cincinnati Type, a Mandibulofacial Dysostosis Syndrome with Limb Anomalies, Is Caused by POLR1A Dysfunction. Am J Hum Genet. 2015;96(5):765–74. doi: 10.1016/j.ajhg.2015.03.011 25913037
15. Blake JA, Ziman MR. Pax genes: regulators of lineage specification and progenitor cell maintenance. Development. 2014;141(4):737–51. doi: 10.1242/dev.091785 24496612
16. Chi N, Epstein JA. Getting your Pax straight: Pax proteins in development and disease. Trends in Genetics. 2002;18(1):41–7. doi: 10.1016/s0168-9525(01)02594-x 11750700
17. Stockton DW, Das P, Goldenberg M, D'Souza RN, Patel PI. Mutation of PAX9 is associated with oligodontia. Nat Genet. 2000;24(1):18–9. doi: 10.1038/71634 10615120
18. Nieminen P, Arte S, Tanner D, Paulin L, Alaluusua S, Thesleff I, et al. Identification of a nonsense mutation in the PAX9 gene in molar oligodontia. Eur J Hum Genet. 2001;9(10):743–6. doi: 10.1038/sj.ejhg.5200715 11781684
19. Frazier-Bowers SA, Guo DC, Cavender A, Xue L, Evans B, King T, et al. A novel mutation in human PAX9 causes molar oligodontia. J Dent Res. 2002;81(2):129–33. 11827258
20. Šerý O, Bonczek O, Hloušková A, Černochová P, Vaněk J, Míšek I, et al. A screen of a large Czech cohort of oligodontia patients implicates a novel mutation in the PAX9 gene. European journal of oral sciences. 2015;123(2):65–71. doi: 10.1111/eos.12170 25683653
21. Mostowska A, Zadurska M, Rakowska A, Lianeri M, Jagodzinski PP. Novel PAX9 mutation associated with syndromic tooth agenesis. European journal of oral sciences. 2013;121(5):403–11. doi: 10.1111/eos.12071 24028587
22. Wong SW, Han D, Zhang H, Liu Y, Zhang X, Miao MZ, et al. Nine Novel PAX9 Mutations and a Distinct Tooth Agenesis Genotype-Phenotype. J Dent Res. 2018;97(2):155–62. doi: 10.1177/0022034517729322 28910570
23. Daw EM, Saliba C, Grech G, Camilleri S. A novel PAX9 mutation causing oligodontia. Arch Oral Biol. 2017;84:100–5. doi: 10.1016/j.archoralbio.2017.09.018 28965043
24. Sarkar T, Bansal R, Das P. A novel G to A transition at initiation codon and exon-intron boundary of PAX9 identified in association with familial isolated oligodontia. Gene. 2017;635:69–76. doi: 10.1016/j.gene.2017.08.020 28847717
25. Fauzi NH, Ardini YD, Zainuddin Z, Lestari W. A review on non-syndromic tooth agenesis associated with PAX9 mutations. Jpn Dent Sci Rev. 2018;54(1):30–6. doi: 10.1016/j.jdsr.2017.08.001 29628999
26. Yu M, Wong S-W, Han D, Cai T. Genetic analysis: Wnt and other pathways in nonsyndromic tooth agenesis. Oral Diseases. 2018:1–6.
27. Peters H, Neubuser A, Kratochwil K, Balling R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998;12(17):2735–47. doi: 10.1101/gad.12.17.2735 9732271
28. Phillips HM, Stothard CA, Shaikh Qureshi WM, Kousa AI, Briones-Leon JA, Khasawneh RR, et al. Pax9 is required for cardiovascular development and interacts with Tbx1 in the pharyngeal endoderm to control 4th pharyngeal arch artery morphogenesis. Development. 2019;146(18).
29. Farley-Barnes KI, Ogawa LM, Baserga SJ. Ribosomopathies: Old Concepts, New Controversies. Trends Genet. 2019;35(10):754–67. doi: 10.1016/j.tig.2019.07.004 31376929
30. Jia S, Zhou J, Fanelli C, Wee Y, Bonds J, Schneider P, et al. Small-molecule Wnt agonists correct cleft palates in Pax9 mutant mice in utero. Development. 2017;144(20):3819–28. doi: 10.1242/dev.157750 28893947
31. Li C, Lan Y, Krumlauf R, Jiang R. Modulating Wnt Signaling Rescues Palate Morphogenesis in Pax9 Mutant Mice. Journal of Dental Research. 2017;96(11):1273–81. doi: 10.1177/0022034517719865 28692808
32. Jia S, Zhou J, Wee Y, Mikkola ML, Schneider P, D’Souza RN. Anti-EDAR Agonist Antibody Therapy Resolves Palate Defects in Pax9-/- Mice. Journal of Dental Research. 2017;96(11):1282–9. doi: 10.1177/0022034517726073 28813171
33. Jia S, Zhou J, D'Souza RN. Pax9's dual roles in modulating Wnt signaling during murine palatogenesis. Dev Dyn. 2020.
34. Farley-Barnes KI, McCann KL, Ogawa LM, Merkel J, Surovtseva YV, Baserga SJ. Diverse Regulators of Human Ribosome Biogenesis Discovered by Changes in Nucleolar Number. Cell Rep. 2018;22(7):1923–34. doi: 10.1016/j.celrep.2018.01.056 29444442
35. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7(10):R100. doi: 10.1186/gb-2006-7-10-r100 17076895
36. Weiss WA, Taylor SS, Shokat KM. Recognizing and exploiting differences between RNAi and small-molecule inhibitors. Nat Chem Biol. 2007;3(12):739–44. doi: 10.1038/nchembio1207-739 18007642
37. Mohr SE, Smith JA, Shamu CE, Neumuller RA, Perrimon N. RNAi screening comes of age: improved techniques and complementary approaches. Nat Rev Mol Cell Biol. 2014;15(9):591–600. doi: 10.1038/nrm3860 25145850
38. Freed EF, Prieto JL, McCann KL, McStay B, Baserga SJ. NOL11, implicated in the pathogenesis of North American Indian childhood cirrhosis, is required for pre-rRNA transcription and processing. PLoS genetics. 2012;8(8):e1002892. doi: 10.1371/journal.pgen.1002892 22916032
39. Ghoshal K, Majumder S, Datta J, Motiwala T, Bai S, Sharma SM, et al. Role of human ribosomal RNA (rRNA) promoter methylation and of methyl-CpG-binding protein MBD2 in the suppression of rRNA gene expression. J Biol Chem. 2004;279(8):6783–93. doi: 10.1074/jbc.M309393200 14610093
40. Wang M, Anikin L, Pestov DG. Two orthogonal cleavages separate subunit RNAs in mouse ribosome biogenesis. Nucleic Acids Research. 2014;42(17):11180–91. doi: 10.1093/nar/gku787 25190460
41. Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Meth. 2009;6(4):275–7.
42. Dieudonné F-X, O’Connor PBF, Gubler-Jaquier P, Yasrebi H, Conne B, Nikolaev S, et al. The effect of heterogeneous Transcription Start Sites (TSS) on the translatome: implications for the mammalian cellular phenotype. BMC Genomics. 2015;16(1):986.
43. Bernstein KA, Bleichert F, Bean JM, Cross FR, Baserga SJ. Ribosome biogenesis is sensed at the Start cell cycle checkpoint. Mol Biol Cell. 2007;18(3):953–64. doi: 10.1091/mbc.e06-06-0512 17192414
44. Fumagalli S, Ivanenkov VV, Teng T, Thomas G. Suprainduction of p53 by disruption of 40S and 60S ribosome biogenesis leads to the activation of a novel G2/M checkpoint. Genes Dev. 2012;26(10):1028–40. doi: 10.1101/gad.189951.112 22588717
45. Lessard F, Igelmann S, Trahan C, Huot G, Saint-Germain E, Mignacca L, et al. Senescence-associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nature Cell Biology. 2018;20(7):789–99. doi: 10.1038/s41556-018-0127-y 29941930
46. Shamsuzzaman M, Bommakanti A, Zapinsky A, Rahman N, Pascual C, Lindahl L. Analysis of cell cycle parameters during the transition from unhindered growth to ribosomal and translational stress conditions. PLoS One. 2017;12(10):e0186494. doi: 10.1371/journal.pone.0186494 29028845
47. Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY). 2019;11(8):2512–40.
48. James A, Wang Y, Raje H, Rosby R, DiMario P. Nucleolar stress with and without p53. Nucleus. 2014;5(5):402–26. doi: 10.4161/nucl.32235 25482194
49. Hayashi Y, Fujimura A, Kato K, Udagawa R, Hirota T, Kimura K. Nucleolar integrity during interphase supports faithful Cdk1 activation and mitotic entry. Science Advances. 2018;4(6):eaap7777. doi: 10.1126/sciadv.aap7777 29881774
50. Jarboui MA, Wynne K, Elia G, Hall WW, Gautier VW. Proteomic profiling of the human T-cell nucleolus. Molecular immunology. 2011;49(3):441–52. doi: 10.1016/j.molimm.2011.09.005 22014684
51. Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI. NOPdb: Nucleolar Proteome Database—2008 update. Nucleic Acids Res. 2009;37(Database issue):D181–4. doi: 10.1093/nar/gkn804 18984612
52. Thul PJ, Akesson L, Wiking M, Mahdessian D, Geladaki A, Ait Blal H, et al. A subcellular map of the human proteome. Science. 2017;356(6340):eaal3321. doi: 10.1126/science.aal3321 28495876
53. Kramer A, Green J, Pollard J Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523–30. doi: 10.1093/bioinformatics/btt703 24336805
54. Sivakamasundari V, Kraus P, Sun W, Hu X, Lim SL, Prabhakar S, et al. A developmental transcriptomic analysis of Pax1 and Pax9 in embryonic intervertebral disc development. Biology open.s 2017;6(2):187–99.
55. Bailey TL, Machanick P. Inferring direct DNA binding from ChIP-seq. Nucleic Acids Research. 2012;40(17):e128–e. doi: 10.1093/nar/gks433 22610855
56. Epstein J, Cai J, Glaser T, Jepeal L, Maas R. Identification of a Pax paired domain recognition sequence and evidence for DNA-dependent conformational changes. Journal of Biological Chemistry. 1994;269(11):8355–61. 8132558
57. Badertscher L, Wild T, Montellese C, Alexander LT, Bammert L, Sarazova M, et al. Genome-wide RNAi Screening Identifies Protein Modules Required for 40S Subunit Synthesis in Human Cells. Cell Rep. 2015;13(12):2879–91. doi: 10.1016/j.celrep.2015.11.061 26711351
58. Neumuller RA, Gross T, Samsonova AA, Vinayagam A, Buckner M, Founk K, et al. Conserved regulators of nucleolar size revealed by global phenotypic analyses. Sci Signal. 2013;6(289):ra70. doi: 10.1126/scisignal.2004145 23962978
59. O'Donohue MF, Choesmel V, Faubladier M, Fichant G, Gleizes PE. Functional dichotomy of ribosomal proteins during the synthesis of mammalian 40S ribosomal subunits. J Cell Biol. 2010;190(5):853–66. doi: 10.1083/jcb.201005117 20819938
60. Tafforeau L, Zorbas C, Langhendries JL, Mullineux ST, Stamatopoulou V, Mullier R, et al. The Complexity of Human Ribosome Biogenesis Revealed by Systematic Nucleolar Screening of Pre-rRNA Processing Factors. Mol Cell. 2013;51(4):539–51. doi: 10.1016/j.molcel.2013.08.011 23973377
61. McLeay RC, Bailey TL. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC bioinformatics. 2010;11(1):165.
62. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 2017;45(D1):D331–D8. doi: 10.1093/nar/gkw1108 27899567
63. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9. doi: 10.1038/75556 10802651
64. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017;45(D1):D183–D9. doi: 10.1093/nar/gkw1138 27899595
65. Carneiro M, Hu D, Archer J, Feng C, Afonso S, Chen C, et al. Dwarfism and Altered Craniofacial Development in Rabbits Is Caused by a 12.1 kb Deletion at the HMGA2 Locus. Genetics. 2017;205(2):955–65. doi: 10.1534/genetics.116.196667 27986804
66. Sondalle SB, Longerich S, Ogawa LM, Sung P, Baserga SJ. Fanconi anemia protein FANCI functions in ribosome biogenesis. Proceedings of the National Academy of Sciences. 2019;116(7):2561–70.
67. Ross AP, Zarbalis KS. The emerging roles of ribosome biogenesis in craniofacial development. Front Physiol. 2014;5:26–. doi: 10.3389/fphys.2014.00026 24550838
68. Trainor PA, Merrill AE. Ribosome biogenesis in skeletal development and the pathogenesis of skeletal disorders. Biochimica et biophysica acta. 2014;1842(6):769–78. doi: 10.1016/j.bbadis.2013.11.010 24252615
69. Dixon J, Jones NC, Sandell LL, Jayasinghe SM, Crane J, Rey J-P, et al. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proceedings of the National Academy of Sciences. 2006;103(36):13403–8.
70. Griffin JN, Sondalle SB, del Viso F, Baserga SJ, Khokha MK. The Ribosome Biogenesis Factor Nol11 Is Required for Optimal rDNA Transcription and Craniofacial Development in Xenopus. PLoS genetics. 2015;11(3):e1005018. doi: 10.1371/journal.pgen.1005018 25756904
71. Calo E, Gu B, Bowen ME, Aryan F, Zalc A, Liang J, et al. Tissue-selective effects of nucleolar stress and rDNA damage in developmental disorders. Nature. 2018;554(7690):112–7. doi: 10.1038/nature25449 29364875
72. Chen JY, Tan X, Wang ZH, Liu YZ, Zhou JF, Rong XZ, et al. The ribosome biogenesis protein Esf1 is essential for pharyngeal cartilage formation in zebrafish. FEBS J. 2018;285(18):3464–83. doi: 10.1111/febs.14622 30073783
73. Zhao C, Andreeva V, Gibert Y, LaBonty M, Lattanzi V, Prabhudesai S, et al. Tissue specific roles for the ribosome biogenesis factor Wdr43 in zebrafish development. PLoS genetics. 2014;10(1):e1004074–e. doi: 10.1371/journal.pgen.1004074 24497835
74. Noack Watt KE, Achilleos A, Neben CL, Merrill AE, Trainor PA. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome. PLoS genetics. 2016;12(7):e1006187. doi: 10.1371/journal.pgen.1006187 27448281
75. Watt KEN, Neben CL, Hall S, Merrill AE, Trainor PA. tp53-dependent and independent signaling underlies the pathogenesis and possible prevention of Acrofacial Dysostosis–Cincinnati type. Human Molecular Genetics. 2018;27(15):2628–43. doi: 10.1093/hmg/ddy172 29750247
76. Monsoro-Burq AH. PAX transcription factors in neural crest development. Semin Cell Dev Biol. 2015;44:87–96. doi: 10.1016/j.semcdb.2015.09.015 26410165
77. Sanchez RS, Sanchez SS. Characterization of pax1, pax9, and uncx sclerotomal genes during Xenopus laevis embryogenesis. Dev Dyn. 2013;242(5):572–9. doi: 10.1002/dvdy.23945 23401059
78. Peters H, Neubuser A, Balling R. Pax genes and organogenesis: Pax9 meets tooth development. European journal of oral sciences. 1998;106 Suppl 1:38–43.
79. Griffin JN, Sondalle SB, Robson A, Mis EK, Griffin G, Kulkarni SS, et al. RPSA, a candidate gene for isolated congenital asplenia, is required for pre-rRNA processing and spleen formation in Xenopus. Development. 2018;145(20).
80. Robson A, Owens NDL, Baserga SJ, Khokha MK, Griffin JN. Expression of ribosomopathy genes during Xenopus tropicalis embryogenesis. BMC Dev Biol. 2016;16(1):38–. doi: 10.1186/s12861-016-0138-5 27784267
81. Deniz E, Jonas S, Hooper M, J NG, Choma MA, Khokha MK. Analysis of Craniocardiac Malformations in Xenopus using Optical Coherence Tomography. Sci Rep. 2017;7:42506. doi: 10.1038/srep42506 28195132
82. Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15(12):829–45. doi: 10.1038/nrg3813 25365966
83. Brannan KW, Jin W, Huelga SC, Banks CA, Gilmore JM, Florens L, et al. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes. Mol Cell. 2016;64(2):282–93. doi: 10.1016/j.molcel.2016.09.003 27720645
84. Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR. RBPDB: a database of RNA-binding specificities. Nucleic Acids Research. 2011;39(suppl_1):D301–D8.
85. Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature. 2013;499(7457):172–7. doi: 10.1038/nature12311 23846655
86. Sobecki M, Mrouj K, Camasses A, Parisis N, Nicolas E, Lleres D, et al. The cell proliferation antigen Ki-67 organises heterochromatin. Elife. 2016;5:e13722. doi: 10.7554/eLife.13722 26949251
87. Owens NDL, Blitz IL, Lane MA, Patrushev I, Overton JD, Gilchrist MJ, et al. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development. Cell Rep. 2016;14(3):632–47. doi: 10.1016/j.celrep.2015.12.050 26774488
88. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Meth. 2012;9(4):357–9.
89. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotech. 2010;28(5):511–5.
90. del Viso F, Khokha M. Generating diploid embryos from Xenopus tropicalis. Methods Mol Biol. 2012;917:33–41. doi: 10.1007/978-1-61779-992-1_3 22956081
91. Khokha MK, Chung C, Bustamante EL, Gaw LW, Trott KA, Yeh J, et al. Techniques and probes for the study of Xenopus tropicalis development. Dev Dyn. 2002;225(4):499–510. doi: 10.1002/dvdy.10184 12454926
92. Bhattacharya D, Marfo CA, Li D, Lane M, Khokha MK. CRISPR/Cas9: An inexpensive, efficient loss of function tool to screen human disease genes in Xenopus. Dev Biol. 2015;408(2):196–204. doi: 10.1016/j.ydbio.2015.11.003 26546975
93. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. doi: 10.1038/nprot.2013.143 24157548
94. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi: 10.1038/nmeth.2019 22743772
95. Hensey C, Gautier J. Programmed cell death during Xenopus development: a spatio-temporal analysis. Developmental biology. 1998;203(1):36–48. doi: 10.1006/dbio.1998.9028 9806771
96. Spandidos A, Wang X, Wang H, Seed B. PrimerBank: a resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Research. 2010;38(suppl_1):D792–D9.
97. Galiveti CR, Rozhdestvensky TS, Brosius J, Lehrach H, Konthur Z. Application of housekeeping npcRNAs for quantitative expression analysis of human transcriptome by real-time PCR. RNA. 2010;16(2):450–61. doi: 10.1261/rna.1755810 20040593
98. Rice SJ, Lai S-C, Wood LW, Helsley KR, Runkle EA, Winslow MM, et al. MicroRNA-33a Mediates the Regulation of High Mobility Group AT-Hook 2 Gene (HMGA2) by Thyroid Transcription Factor 1 (TTF-1/NKX2–1). Journal of Biological Chemistry. 2013;288(23):16348–60. doi: 10.1074/jbc.M113.474643 23625920
99. Gordon CA, Gong X, Ganesh D, Brooks JD. NUSAP1 promotes invasion and metastasis of prostate cancer. Oncotarget. 2017;8(18):29935–50. doi: 10.18632/oncotarget.15604 28404898
100. Wiza C, Chadt A, Blumensatt M, Kanzleiter T, Herzfeld De Wiza D, Horrighs A, et al. Over-expression of PRAS40 enhances insulin sensitivity in skeletal muscle. Archives of Physiology and Biochemistry. 2014;120(2):64–72. doi: 10.3109/13813455.2014.894076 24576065
101. Guo L, Zhong D, Lau S, Liu X, Dong X-Y, Sun X, et al. Sox7 is an independent checkpoint for β-catenin function in prostate and colon epithelial cells. Molecular cancer research: MCR. 2008;6(9):1421–30. doi: 10.1158/1541-7786.MCR-07-2175 18819930
102. Luo C, Yao Y, Yu Z, Zhou H, Guo L, Zhang J, et al. UBE2T knockdown inhibits gastric cancer progression. Oncotarget. 2017;8(20):32639–54. doi: 10.18632/oncotarget.15947 28427240
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 8
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
Nejčtenější v tomto čísle
- Genomic imprinting: An epigenetic regulatory system
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans