Sequential activation of Notch and Grainyhead gives apoptotic competence to Abdominal-B expressing larval neuroblasts in Drosophila Central nervous system
Autoři:
Asif Bakshi aff001; Rashmi Sipani aff001; Neha Ghosh aff001; Rohit Joshi aff001
Působiště autorů:
Laboratory of Drosophila Neural Development, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, India
aff001; Graduate Studies, Manipal Academy of Higher Education, Manipal, India
aff002
Vyšlo v časopise:
Sequential activation of Notch and Grainyhead gives apoptotic competence to Abdominal-B expressing larval neuroblasts in Drosophila Central nervous system. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008976
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008976
Souhrn
Neural circuitry for mating and reproduction resides within the terminal segments of central nervous system (CNS) which express Hox paralogous group 9–13 (in vertebrates) or Abdominal-B (Abd-B) in Drosophila. Terminal neuroblasts (NBs) in A8-A10 segments of Drosophila larval CNS are subdivided into two groups based on expression of transcription factor Doublesex (Dsx). While the sex specific fate of Dsx-positive NBs is well investigated, the fate of Dsx-negative NBs is not known so far. Our studies with Dsx-negative NBs suggests that these cells, like their abdominal counterparts (in A3-A7 segments) use Hox, Grainyhead (Grh) and Notch to undergo cell death during larval development. This cell death also happens by transcriptionally activating RHG family of apoptotic genes through a common apoptotic enhancer in early to mid L3 stages. However, unlike abdominal NBs (in A3-A7 segments) which use increasing levels of resident Hox factor Abdominal-A (Abd-A) as an apoptosis trigger, Dsx-negative NBs (in A8-A10 segments) keep the levels of resident Hox factor Abd-B constant. These cells instead utilize increasing levels of the temporal transcription factor Grh and a rise in Notch activity to gain apoptotic competence. Biochemical and in vivo analysis suggest that Abdominal-A and Grh binding motifs in the common apoptotic enhancer also function as Abdominal-B and Grh binding motifs and maintains the enhancer activity in A8-A10 NBs. Finally, the deletion of this enhancer by the CRISPR-Cas9 method blocks the apoptosis of Dsx-negative NBs. These results highlight the fact that Hox dependent NB apoptosis in abdominal and terminal regions utilizes common molecular players (Hox, Grh and Notch), but seems to have evolved different molecular strategies to pattern CNS.
Klíčová slova:
Apoptosis – Central nervous system – Electrophoretic mobility shift assay – Genomics – Larvae – Mutagenesis – Notch signaling – RNA interference
Zdroje
1. Doe CQ. Temporal Patterning in the Drosophila CNS. Annual review of cell and developmental biology. 2017 Oct 6;33:219–40. doi: 10.1146/annurev-cellbio-111315-125210 28992439.
2. Kohwi M, Doe CQ. Temporal fate specification and neural progenitor competence during development. Nature reviews Neuroscience. 2013 Dec;14(12):823–38. doi: 10.1038/nrn3618 24400340. Pubmed Central PMCID: 3951856.
3. Homem CC, Knoblich JA. Drosophila neuroblasts: a model for stem cell biology. Development. 2012 Dec 1;139(23):4297–310. doi: 10.1242/dev.080515 23132240
4. Prokop A, Bray S, Harrison E, Technau GM. Homeotic regulation of segment-specific differences in neuroblast numbers and proliferation in the Drosophila central nervous system. Mechanisms of development. 1998 Jun;74(1–2):99–110. doi: 10.1016/s0925-4773(98)00068-9 9651493. eng.
5. Bello BC, Hirth F, Gould AP. A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron. 2003 Jan 23;37(2):209–19. doi: 10.1016/s0896-6273(02)01181-9 12546817. eng.
6. Yeo W, Gautier J. Early neural cell death: dying to become neurons. Developmental biology. 2004 Oct 15;274(2):233–44. doi: 10.1016/j.ydbio.2004.07.026 15385155.
7. Cenci C, Gould AP. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development. 2005 Sep;132(17):3835–45. doi: 10.1242/dev.01932 16049114. eng.
8. Kuert PA, Bello BC, Reichert H. The labial gene is required to terminate proliferation of identified neuroblasts in postembryonic development of the Drosophila brain. Biol Open. 2012 Oct 15;1(10):1006–15. doi: 10.1242/bio.20121966 23213378. Pubmed Central PMCID: 3507175.
9. Birkholz O, Rickert C, Berger C, Urbach R, Technau GM. Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors. Development. 2013 Apr;140(8):1830–42. doi: 10.1242/dev.090043 23533181.
10. Kuert PA, Hartenstein V, Bello BC, Lovick JK, Reichert H. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain. Developmental biology. 2014 Jun 15;390(2):102–15. doi: 10.1016/j.ydbio.2014.03.021 24713419. eng.
11. Arya R, Sarkissian T, Tan Y, White K. Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner. Cell Death Differ. 2015 Aug;22(8):1378–87. doi: 10.1038/cdd.2014.235 25633198. eng.
12. Khandelwal R, Sipani R, Govinda Rajan S, Kumar R, Joshi R. Combinatorial action of Grainyhead, Extradenticle and Notch in regulating Hox mediated apoptosis in Drosophila larval CNS. PLoS Genet. 2017 Oct;13(10):e1007043. doi: 10.1371/journal.pgen.1007043 29023471. Pubmed Central PMCID: 5667929.
13. Ghosh N, Bakshi A, Khandelwal R, Rajan SG, Joshi R. The Hox gene Abdominal-B uses Doublesex(F) as a cofactor to promote neuroblast apoptosis in the Drosophila central nervous system. Development. 2019 Aug 22;146(16). doi: 10.1242/dev.175158 31371379.
14. Truman JW, Bate M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Developmental biology. 1988 Jan;125(1):145–57. doi: 10.1016/0012-1606(88)90067-x 3119399.
15. Economides KD, Zeltser L, Capecchi MR. Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae. Developmental biology. 2003 Apr 15;256(2):317–30. doi: 10.1016/s0012-1606(02)00137-9 12679105. eng.
16. Dasen JS, Liu JP, Jessell TM. Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature. 2003 Oct 30;425(6961):926–33. doi: 10.1038/nature02051 14586461.
17. Miguel-Aliaga I, Thor S. Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity. Development. 2004 Dec;131(24):6093–105. doi: 10.1242/dev.01521 15537690.
18. Dasen JS, Tice BC, Brenner-Morton S, Jessell TM. A Hox regulatory network establishes motor neuron pool identity and target-muscle connectivity. Cell. 2005 Nov 4;123(3):477–91. doi: 10.1016/j.cell.2005.09.009 16269338.
19. Rogulja-Ortmann A, Renner S, Technau GM. Antagonistic roles for Ultrabithorax and Antennapedia in regulating segment-specific apoptosis of differentiated motoneurons in the Drosophila embryonic central nervous system. Development. 2008 Oct;135(20):3435–45. doi: 10.1242/dev.023986 18799545.
20. Tabuse M, Ohta S, Ohashi Y, Fukaya R, Misawa A, Yoshida K, et al. Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells. Mol Cancer. 2011;10:60. doi: 10.1186/1476-4598-10-60 21600039. eng.
21. Suska A, Miguel-Aliaga I, Thor S. Segment-specific generation of Drosophila Capability neuropeptide neurons by multi-faceted Hox cues. Developmental biology. 2011 May 1;353(1):72–80. doi: 10.1016/j.ydbio.2011.02.015 21354130. Pubmed Central PMCID: 3094758.
22. Baek M, Enriquez J, Mann RS. Dual role for Hox genes and Hox co-factors in conferring leg motoneuron survival and identity in Drosophila. Development. 2013 May;140(9):2027–38. doi: 10.1242/dev.090902 23536569. Pubmed Central PMCID: 3631975.
23. Kocak H, Ackermann S, Hero B, Kahlert Y, Oberthuer A, Juraeva D, et al. Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma. Cell Death Dis. 2013;4:e586. doi: 10.1038/cddis.2013.84 23579273. eng.
24. Moris-Sanz M, Estacio-Gomez A, Sanchez-Herrero E, Diaz-Benjumea FJ. The study of the Bithorax-complex genes in patterning CCAP neurons reveals a temporal control of neuronal differentiation by Abd-B. Biol Open. 2015;4(9):1132–42. doi: 10.1242/bio.012872 26276099. Pubmed Central PMCID: 4582124.
25. Allan DW, Thor S. Transcriptional selectors, masters, and combinatorial codes: regulatory principles of neural subtype specification. Wiley interdisciplinary reviews Developmental biology. 2015 Sep-Oct;4(5):505–28. doi: 10.1002/wdev.191 25855098. Pubmed Central PMCID: 4672696.
26. Bray SJ. Notch signalling in context. Nature reviews Molecular cell biology. 2016 Nov;17(11):722–35. doi: 10.1038/nrm.2016.94 27507209.
27. Furriols M, Bray S. A model Notch response element detects Suppressor of Hairless-dependent molecular switch. Current biology: CB. 2001 Jan 9;11(1):60–4. doi: 10.1016/s0960-9822(00)00044-0 11166182.
28. Cave JW, Loh F, Surpris JW, Xia L, Caudy MA. A DNA transcription code for cell-specific gene activation by notch signaling. Current biology: CB. 2005 Jan 26;15(2):94–104. doi: 10.1016/j.cub.2004.12.070 15668164.
29. Bertet C, Li X, Erclik T, Cavey M, Wells B, Desplan C. Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper. Cell. 2014 Aug 28;158(5):1173–86. doi: 10.1016/j.cell.2014.07.045 25171415. Pubmed Central PMCID: 4153738.
30. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H. Genetic control of programmed cell death in Drosophila. Science. 1994 Apr 29;264(5159):677–83. doi: 10.1126/science.8171319 8171319. eng.
31. Grether ME, Abrams JM, Agapite J, White K, Steller H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes & development. 1995 Jul 15;9(14):1694–708. doi: 10.1101/gad.9.14.1694 7622034.
32. Chen P, Nordstrom W, Gish B, Abrams JM. grim, a novel cell death gene in Drosophila. Genes & development. 1996 Jul 15;10(14):1773–82. doi: 10.1101/gad.10.14.1773 8698237.
33. Peterson C, Carney GE, Taylor BJ, White K. reaper is required for neuroblast apoptosis during Drosophila development. Development. 2002 Mar;129(6):1467–76. 11880355. eng.
34. Monedero Cobeta I, Salmani BY, Thor S. Anterior-Posterior Gradient in Neural Stem and Daughter Cell Proliferation Governed by Spatial and Temporal Hox Control. Current biology: CB. 2017 Apr 24;27(8):1161–72. doi: 10.1016/j.cub.2017.03.023 28392108.
35. Bahrampour S, Jonsson C, Thor S. Brain expansion promoted by polycomb-mediated anterior enhancement of a neural stem cell proliferation program. PLoS biology. 2019 Feb;17(2):e3000163. doi: 10.1371/journal.pbio.3000163 30807568. Pubmed Central PMCID: 6407790.
36. Tan Y, Yamada-Mabuchi M, Arya R, St Pierre S, Tang W, Tosa M, et al. Coordinated expression of cell death genes regulates neuroblast apoptosis. Development. 2011 Jun;138(11):2197–206. doi: 10.1242/dev.058826 21558369. eng.
37. Billeter JC, Rideout EJ, Dornan AJ, Goodwin SF. Control of male sexual behavior in Drosophila by the sex determination pathway. Current biology: CB. 2006 Sep 5;16(17):R766–76. doi: 10.1016/j.cub.2006.08.025 16950103.
38. Billeter JC, Villella A, Allendorfer JB, Dornan AJ, Richardson M, Gailey DA, et al. Isoform-specific control of male neuronal differentiation and behavior in Drosophila by the fruitless gene. Current biology: CB. 2006 Jun 6;16(11):1063–76. doi: 10.1016/j.cub.2006.04.039 16753560.
39. Rideout EJ, Dornan AJ, Neville MC, Eadie S, Goodwin SF. Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster. Nat Neurosci. 2010 Apr;13(4):458–66. doi: 10.1038/nn.2515 20305646. Pubmed Central PMCID: 3092424.
40. Clough E, Jimenez E, Kim YA, Whitworth C, Neville MC, Hempel LU, et al. Sex- and tissue-specific functions of Drosophila doublesex transcription factor target genes. Developmental cell. 2014 Dec 22;31(6):761–73. doi: 10.1016/j.devcel.2014.11.021 25535918. Pubmed Central PMCID: 4275658.
41. Bussell JJ, Yapici N, Zhang SX, Dickson BJ, Vosshall LB. Abdominal-B neurons control Drosophila virgin female receptivity. Current biology: CB. 2014 Jul 21;24(14):1584–95. doi: 10.1016/j.cub.2014.06.011 24998527. Pubmed Central PMCID: 4476023.
42. Crickmore MA, Vosshall LB. Opposing dopaminergic and GABAergic neurons control the duration and persistence of copulation in Drosophila. Cell. 2013 Nov 7;155(4):881–93. doi: 10.1016/j.cell.2013.09.055 24209625. Pubmed Central PMCID: 4048588.
43. Taylor BJ, Truman JW. Commitment of abdominal neuroblasts in Drosophila to a male or female fate is dependent on genes of the sex-determining hierarchy. Development. 1992 Mar;114(3):625–42. 1618132.
44. Lee BP, Jones BW. Transcriptional regulation of the Drosophila glial gene repo. Mechanisms of development. 2005 Jun;122(6):849–62. doi: 10.1016/j.mod.2005.01.002 15939231.
45. Almeida MS, Bray SJ. Regulation of post-embryonic neuroblasts by Drosophila Grainyhead. Mechanisms of development. 2005 Dec;122(12):1282–93. doi: 10.1016/j.mod.2005.08.004 16275038.
46. Pearson BJ, Doe CQ. Regulation of neuroblast competence in Drosophila. Nature. 2003 Oct 9;425(6958):624–8. doi: 10.1038/nature01910 14534589.
47. Namihira M, Kohyama J, Semi K, Sanosaka T, Deneen B, Taga T, et al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Developmental cell. 2009 Feb;16(2):245–55. doi: 10.1016/j.devcel.2008.12.014 19217426.
48. Li X, Chen Z, Desplan C. Temporal patterning of neural progenitors in Drosophila. Current topics in developmental biology. 2013;105:69–96. doi: 10.1016/B978-0-12-396968-2.00003-8 23962839. Pubmed Central PMCID: 3927947.
49. Cau E, Blader P. Notch activity in the nervous system: to switch or not switch? Neural development. 2009 Oct 2;4:36. doi: 10.1186/1749-8104-4-36 19799767. Pubmed Central PMCID: 2761386.
50. Bray SJ, Burke B, Brown NH, Hirsh J. Embryonic expression pattern of a family of Drosophila proteins that interact with a central nervous system regulatory element. Genes & development. 1989 Aug;3(8):1130–45. doi: 10.1101/gad.3.8.1130 2792757. eng.
51. Zacharioudaki E, Housden BE, Garinis G, Stojnic R, Delidakis C, Bray SJ. Genes implicated in stem cell identity and temporal programme are directly targeted by Notch in neuroblast tumours. Development. 2016 Jan 15;143(2):219–31. doi: 10.1242/dev.126326 26657768. Pubmed Central PMCID: 4725341.
52. Birkholz O, Vef O, Rogulja-Ortmann A, Berger C, Technau GM. Abdominal-B and caudal inhibit the formation of specific neuroblasts in the Drosophila tail region. Development. 2013 Sep;140(17):3552–64. doi: 10.1242/dev.096099 23903193. eng.
53. Nellesen DT, Lai EC, Posakony JW. Discrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators. Developmental biology. 1999 Sep 01;213(1):33–53. doi: 10.1006/dbio.1999.9324 10452845.
54. Brody T, Odenwald WF. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Developmental biology. 2000 Oct 1;226(1):34–44. doi: 10.1006/dbio.2000.9829 10993672.
55. Ito K, Hotta Y. Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Developmental biology. 1992 Jan;149(1):134–48. doi: 10.1016/0012-1606(92)90270-q 1728583.
56. Maurange C, Cheng L, Gould AP. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell. 2008 May 30;133(5):891–902. doi: 10.1016/j.cell.2008.03.034 18510932. eng.
57. Siegrist SE, Haque NS, Chen CH, Hay BA, Hariharan IK. Inactivation of both Foxo and reaper promotes long-term adult neurogenesis in Drosophila. Current biology: CB. 2010 Apr 13;20(7):643–8. doi: 10.1016/j.cub.2010.01.060 20346676. Pubmed Central PMCID: 2862284.
58. Pahl MC, Doyle SE, Siegrist SE. E93 Integrates Neuroblast Intrinsic State with Developmental Time to Terminate MB Neurogenesis via Autophagy. Current biology: CB. 2019 Mar 4;29(5):750–62 e3. doi: 10.1016/j.cub.2019.01.039 30773368. Pubmed Central PMCID: 6428584.
59. Noro B, Culi J, McKay DJ, Zhang W, Mann RS. Distinct functions of homeodomain-containing and homeodomain-less isoforms encoded by homothorax. Genes & development. 2006 Jun 15;20(12):1636–50. doi: 10.1101/gad.1412606 16778079. Pubmed Central PMCID: 1482483.
60. Sanchez-Herrero E, Vernos I, Marco R, Morata G. Genetic organization of Drosophila bithorax complex. Nature. 1985 Jan 10–18;313(5998):108–13. doi: 10.1038/313108a0 3917555.
61. Neumuller RA, Richter C, Fischer A, Novatchkova M, Neumuller KG, Knoblich JA. Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell. 2011 May 6;8(5):580–93. doi: 10.1016/j.stem.2011.02.022 21549331. Pubmed Central PMCID: 3093620.
62. Bischof J, Maeda RK, Hediger M, Karch F, Basler K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3312–7. doi: 10.1073/pnas.0611511104 17360644. Pubmed Central PMCID: 1805588.
63. Kondo S, Ueda R. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics. 2013 Nov;195(3):715–21. doi: 10.1534/genetics.113.156737 24002648. Pubmed Central PMCID: 3813859.
64. Lee T, Luo L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 2001 May;24(5):251–4. doi: 10.1016/s0166-2236(00)01791-4 11311363. eng.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 8
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Antibiotika na nachlazení nezabírají! Jak můžeme zpomalit šíření rezistence?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Genomic imprinting: An epigenetic regulatory system
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans