Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing
Autoři:
Ujué Fresán aff001; Maria A. Rodríguez-Sánchez aff001; Oscar Reina aff003; Victor G. Corces aff004; M. Lluisa Espinàs aff001
Působiště autorů:
Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Barcelona, Spain
aff001; Institute for Research in Biomedicine IRB, Barcelona, Spain
aff002; Bioinformatics and Biostatistics Unit, Institute for Research in Biomedicine IRB, Barcelona, Spain
aff003; Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
aff004
Vyšlo v časopise:
Haspin kinase modulates nuclear architecture and Polycomb-dependent gene silencing. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008962
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008962
Souhrn
Haspin, a highly conserved kinase in eukaryotes, has been shown to be responsible for phosphorylation of histone H3 at threonine 3 (H3T3ph) during mitosis, in mammals and yeast. Here we report that haspin is the kinase that phosphorylates H3T3 in Drosophila melanogaster and it is involved in sister chromatid cohesion during mitosis. Our data reveal that haspin also phosphorylates H3T3 in interphase. H3T3ph localizes in broad silenced domains at heterochromatin and lamin-enriched euchromatic regions. Loss of haspin compromises insulator activity in enhancer-blocking assays and triggers a decrease in nuclear size that is accompanied by changes in nuclear envelope morphology. We show that haspin is a suppressor of position-effect variegation involved in heterochromatin organization. Our results also demonstrate that haspin is necessary for pairing-sensitive silencing and it is required for robust Polycomb-dependent homeotic gene silencing. Haspin associates with the cohesin complex in interphase, mediates Pds5 binding to chromatin and cooperates with Pds5-cohesin to modify Polycomb-dependent homeotic transformations. Therefore, this study uncovers an unanticipated role for haspin kinase in genome organization of interphase cells and demonstrates that haspin is required for homeotic gene regulation.
Klíčová slova:
Drosophila melanogaster – Heterochromatin – Chromatin – Insulators – Invertebrate genomics – Larvae – Mitosis – Salivary glands
Zdroje
1. Dixon JR, Gorkin DU, Ren B (2016) Chromatin Domains: The Unit of Chromosome Organization. Molecular cell 62: 668–680. doi: 10.1016/j.molcel.2016.05.018 27259200
2. Rowley MJ, Corces VG (2016) The three-dimensional genome: principles and roles of long-distance interactions. Curr Opin Cell Biol 40: 8–14. doi: 10.1016/j.ceb.2016.01.009 26852111
3. Ali T, Renkawitz R, Bartkuhn M (2016) Insulators and domains of gene expression. Current opinion in genetics & development 37: 17–26.
4. Cubenas-Potts C, Corces VG (2015) Architectural proteins, transcription, and the three-dimensional organization of the genome. FEBS Lett 589: 2923–2930. doi: 10.1016/j.febslet.2015.05.025 26008126
5. Merkenschlager M, Nora EP (2016) CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation. Annu Rev Genomics Hum Genet 17: 17–43. doi: 10.1146/annurev-genom-083115-022339 27089971
6. Vogelmann J, Le Gall A, Dejardin S, Allemand F, Gamot A, et al. (2014) Chromatin insulator factors involved in long-range DNA interactions and their role in the folding of the Drosophila genome. PLoS genetics 10: e1004544. doi: 10.1371/journal.pgen.1004544 25165871
7. Cruz-Molina S, Respuela P, Tebartz C, Kolovos P, Nikolic M, et al. (2017) PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. Cell Stem Cell 20: 689–705 e689. doi: 10.1016/j.stem.2017.02.004 28285903
8. Eagen KP, Aiden EL, Kornberg RD (2017) Polycomb-mediated chromatin loops revealed by a subkilobase-resolution chromatin interaction map. Proc Natl Acad Sci U S A 114: 8764–8769. doi: 10.1073/pnas.1701291114 28765367
9. Entrevan M, Schuettengruber B, Cavalli G (2016) Regulation of Genome Architecture and Function by Polycomb Proteins. Trends Cell Biol 26: 511–525. doi: 10.1016/j.tcb.2016.04.009 27198635
10. Li L, Lyu X, Hou C, Takenaka N, Nguyen HQ, et al. (2015) Widespread rearrangement of 3D chromatin organization underlies polycomb-mediated stress-induced silencing. Molecular cell 58: 216–231. doi: 10.1016/j.molcel.2015.02.023 25818644
11. Schwartz YB, Cavalli G (2017) Three-Dimensional Genome Organization and Function in Drosophila. Genetics 205: 5–24. doi: 10.1534/genetics.115.185132 28049701
12. Cleard F, Moshkin Y, Karch F, Maeda RK (2006) Probing long-distance regulatory interactions in the Drosophila melanogaster bithorax complex using Dam identification. Nat Genet 38: 931–935. doi: 10.1038/ng1833 16823379
13. Lanzuolo C, Roure V, Dekker J, Bantignies F, Orlando V (2007) Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol 9: 1167–1174. doi: 10.1038/ncb1637 17828248
14. Moshkovich N, Nisha P, Boyle PJ, Thompson BA, Dale RK, et al. (2011) RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes & development 25: 1686–1701.
15. Li HB, Muller M, Bahechar IA, Kyrchanova O, Ohno K, et al. (2011) Insulators, not Polycomb response elements, are required for long-range interactions between Polycomb targets in Drosophila melanogaster. Molecular and cellular biology 31: 616–625. doi: 10.1128/MCB.00849-10 21135119
16. Dai J, Sultan S, Taylor SS, Higgins JM (2005) The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes & development 19: 472–488.
17. Dai J, Sullivan BA, Higgins JM (2006) Regulation of mitotic chromosome cohesion by Haspin and Aurora B. Developmental cell 11: 741–750. doi: 10.1016/j.devcel.2006.09.018 17084365
18. Broad AJ, DeLuca KF, DeLuca JG (2020) Aurora B kinase is recruited to multiple discrete kinetochore and centromere regions in human cells. J Cell Biol 219.
19. Hadders MA, Hindriksen S, Truong MA, Mhaskar AN, Wopken JP, et al. (2020) Untangling the contribution of Haspin and Bub1 to Aurora B function during mitosis. J Cell Biol 219.
20. Wang F, Dai J, Daum JR, Niedzialkowska E, Banerjee B, et al. (2010) Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science 330: 231–235. doi: 10.1126/science.1189435 20705812
21. Goto Y, Yamagishi Y, Shintomi-Kawamura M, Abe M, Tanno Y, et al. (2017) Pds5 Regulates Sister-Chromatid Cohesion and Chromosome Bi-orientation through a Conserved Protein Interaction Module. Current biology: CB 27: 1005–1012. doi: 10.1016/j.cub.2017.02.066 28343969
22. Liang C, Chen Q, Yi Q, Zhang M, Yan H, et al. (2018) A kinase-dependent role for Haspin in antagonizing Wapl and protecting mitotic centromere cohesion. EMBO Rep 19: 43–56. doi: 10.15252/embr.201744737 29138236
23. Zhou L, Liang C, Chen Q, Zhang Z, Zhang B, et al. (2017) The N-Terminal Non-Kinase-Domain-Mediated Binding of Haspin to Pds5B Protects Centromeric Cohesion in Mitosis. Current biology: CB 27: 992–1004. doi: 10.1016/j.cub.2017.02.019 28343965
24. Kelly AE, Ghenoiu C, Xue JZ, Zierhut C, Kimura H, et al. (2010) Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330: 235–239. doi: 10.1126/science.1189505 20705815
25. Ghenoiu C, Wheelock MS, Funabiki H (2013) Autoinhibition and Polo-dependent multisite phosphorylation restrict activity of the histone H3 kinase Haspin to mitosis. Molecular cell 52: 734–745. doi: 10.1016/j.molcel.2013.10.002 24184212
26. Zhou L, Tian X, Zhu C, Wang F, Higgins JM (2014) Polo-like kinase-1 triggers histone phosphorylation by Haspin in mitosis. EMBO Rep 15: 273–281. doi: 10.1002/embr.201338080 24413556
27. Higgins JM (2010) Haspin: a newly discovered regulator of mitotic chromosome behavior. Chromosoma 119: 137–147. doi: 10.1007/s00412-009-0250-4 19997740
28. Rieder CL, Palazzo RE (1992) Colcemid and the mitotic cycle. J Cell Sci 102 (Pt 3): 387–392.
29. Bayliss R, Fry A, Haq T, Yeoh S (2012) On the molecular mechanisms of mitotic kinase activation. Open Biol 2: 120136. doi: 10.1098/rsob.120136 23226601
30. Remeseiro S, Losada A (2013) Cohesin, a chromatin engagement ring. Curr Opin Cell Biol 25: 63–71. doi: 10.1016/j.ceb.2012.10.013 23219370
31. Marasca F, Marullo F, Lanzuolo C (2016) Determination of Polycomb Group of Protein Compartmentalization Through Chromatin Fractionation Procedure. Methods Mol Biol 1480: 167–180. doi: 10.1007/978-1-4939-6380-5_15 27659984
32. Ong CT, Van Bortle K, Ramos E, Corces VG (2013) Poly(ADP-ribosyl)ation regulates insulator function and intrachromosomal interactions in Drosophila. Cell 155: 148–159. doi: 10.1016/j.cell.2013.08.052 24055367
33. Eswaran J, Patnaik D, Filippakopoulos P, Wang F, Stein RL, et al. (2009) Structure and functional characterization of the atypical human kinase haspin. Proc Natl Acad Sci U S A 106: 20198–20203. doi: 10.1073/pnas.0901989106 19918057
34. Kharchenko PV, Alekseyenko AA, Schwartz YB, Minoda A, Riddle NC, et al. (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471: 480–485. doi: 10.1038/nature09725 21179089
35. Elgin SC, Reuter G (2013) Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol 5: a017780. doi: 10.1101/cshperspect.a017780 23906716
36. Barges S, Mihaly J, Galloni M, Hagstrom K, Muller M, et al. (2000) The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development 127: 779–790. 10648236
37. Karch F, Galloni M, Sipos L, Gausz J, Gyurkovics H, et al. (1994) Mcp and Fab-7: molecular analysis of putative boundaries of cis-regulatory domains in the bithorax complex of Drosophila melanogaster. Nucl Acids Res 22: 3138–3146. doi: 10.1093/nar/22.15.3138 7915032
38. Perez-Lluch S, Cuartero S, Azorin F, Espinas ML (2008) Characterization of new regulatory elements within the Drosophila bithorax complex. Nucl Acids Res 36: 6926–6933. doi: 10.1093/nar/gkn818 18978017
39. Capdevila MP, Botas J, Garcia-Bellido A (1986) Genetic interactions between the Polycomb locus and the Antennapedia and Bithorax complexes of Drosophila. Roux Arch Dev Biol 195: 417–432. doi: 10.1007/BF00375746 28305404
40. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276: 565–570. doi: 10.1038/276565a0 103000
41. Simon J, Chiang A, Bender W (1992) Ten different Polycomb group genes are required for spatial control of the abdA and AbdB homeotic products. Development 114: 493–505. 1350533
42. Hagstrom K, Muller M, Schedl P (1997) A Polycomb and GAGA Dependent Silencer Adjoins the Fab-7 Boundary in the Drosophila Bithorax Complex. Genetics 146: 1365–1380. 9258680
43. Rank G, Prestel M, Paro R (2002) Transcription through intergenic chromosomal memory elements of the Drosophila bithorax complex correlates with an epigenetic switch. Molecular and cellular biology 22: 8026–8034. doi: 10.1128/mcb.22.22.8026-8034.2002 12391168
44. Zink D, Paro R (1995) Drosophila Polycomb-group regulated chromatin inhibits the accessibility of a trans-activator to its target DNA. The EMBO journal 14: 5660–5671. 8521823
45. Canudas S, Perez S, Fanti L, Pimpinelli S, Singh N, et al. (2005) dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element. Nucl Acids Res 33: 4857–4864. doi: 10.1093/nar/gki776 16135462
46. Cuadrado A, Gimenez-Llorente D, Kojic A, Rodriguez-Corsino M, Cuartero Y, et al. (2019) Specific Contributions of Cohesin-SA1 and Cohesin-SA2 to TADs and Polycomb Domains in Embryonic Stem Cells. Cell Rep 27: 3500–3510 e3504. doi: 10.1016/j.celrep.2019.05.078 31216471
47. Schaaf CA, Misulovin Z, Gause M, Koenig A, Gohara DW, et al. (2013) Cohesin and polycomb proteins functionally interact to control transcription at silenced and active genes. PLoS genetics 9: e1003560. doi: 10.1371/journal.pgen.1003560 23818863
48. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, et al. (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120: 169–181. doi: 10.1016/j.cell.2005.01.001 15680324
49. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, et al. (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39: 311–318. doi: 10.1038/ng1966 17277777
50. Varier RA, Outchkourov NS, de Graaf P, van Schaik FM, Ensing HJ, et al. (2010) A phospho/methyl switch at histone H3 regulates TFIID association with mitotic chromosomes. The EMBO journal 29: 3967–3978. doi: 10.1038/emboj.2010.261 20953165
51. Yi Q, Chen Q, Liang C, Yan H, Zhang Z, et al. (2018) HP1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO Rep 19.
52. Ogiyama Y, Schuettengruber B, Papadopoulos GL, Chang JM, Cavalli G (2018) Polycomb-Dependent Chromatin Looping Contributes to Gene Silencing during Drosophila Development. Molecular cell 71: 73–88 e75. doi: 10.1016/j.molcel.2018.05.032 30008320
53. Nishiyama T, Ladurner R, Schmitz J, Kreidl E, Schleiffer A, et al. (2010) Sororin mediates sister chromatid cohesion by antagonizing Wapl. Cell 143: 737–749. doi: 10.1016/j.cell.2010.10.031 21111234
54. Vaur S, Feytout A, Vazquez S, Javerzat JP (2012) Pds5 promotes cohesin acetylation and stable cohesin-chromosome interaction. EMBO Rep 13: 645–652. doi: 10.1038/embor.2012.72 22640989
55. Folco HD, McCue A, Balachandran V, Grewal SIS (2019) Cohesin Impedes Heterochromatin Assembly in Fission Yeast Cells Lacking Pds5. Genetics.
56. Dauban L, Montagne R, Thierry A, Lazar-Stefanita L, Bastie N, et al. (2020) Regulation of Cohesin-Mediated Chromosome Folding by Eco1 and Other Partners. Molecular cell 77: 1279–1293 e1274. doi: 10.1016/j.molcel.2020.01.019 32032532
57. Wutz G, Varnai C, Nagasaka K, Cisneros DA, Stocsits RR, et al. (2017) Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. The EMBO journal 36: 3573–3599. doi: 10.15252/embj.201798004 29217591
58. Tark-Dame M, Jerabek H, Manders EM, van der Wateren IM, Heermann DW, et al. (2014) Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling. PLoS Comput Biol 10: e1003877. doi: 10.1371/journal.pcbi.1003877 25299688
59. Amoussou NG, Bigot A, Roussakis C, Robert JH (2018) Haspin: a promising target for the design of inhibitors as potent anticancer drugs. Drug Discov Today 23: 409–415. doi: 10.1016/j.drudis.2017.10.005 29031622
60. Nespoli A, Vercillo R, di Nola L, Diani L, Giannattasio M, et al. (2006) Alk1 and Alk2 are two new cell cycle-regulated haspin-like proteins in budding yeast. Cell Cycle 5: 1464–1471. doi: 10.4161/cc.5.13.2914 16855400
61. Yamagishi Y, Honda T, Tanno Y, Watanabe Y (2010) Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330: 239–243. doi: 10.1126/science.1194498 20929775
62. Bischof J, Maeda RK, Hediger M, Karch F, Basler K (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 104: 3312–3317. doi: 10.1073/pnas.0611511104 17360644
63. Ephrussi B, Herold JL (1944) Studies of Eye Pigments of Drosophila. I. Methods of Extraction and Quantitative Estimation of the Pigment Components. Genetics 29: 148–175. 17247114
64. Pai C-Y, Lei EP, Ghosh D, Corces VG (2004) The Centrosomal Protein CP190 Is a Component of the gypsy Chromatin Insulator. Molecular Cell 16: 737–748. doi: 10.1016/j.molcel.2004.11.004 15574329
65. Tulin A, Naumova NM, Menon AK, Spradling AC (2006) Drosophila poly(ADP-ribose) glycohydrolase mediates chromatin structure and SIR2-dependent silencing. Genetics 172: 363–371. doi: 10.1534/genetics.105.049239 16219773
66. Cuartero S, Fresan U, Reina O, Planet E, Espinas ML (2014) Ibf1 and Ibf2 are novel CP190-interacting proteins required for insulator function. The EMBO journal 33: 637–647. doi: 10.1002/embj.201386001 24502977
67. Font-Burgada J, Rossell D, Auer H, Azorin F (2008) Drosophila HP1c isoform interacts with the zinc-finger proteins WOC and Relative-of-WOC to regulate gene expression. Genes & development 22: 3007–3023.
68. Torras-Llort M, Medina-Giro S, Moreno-Moreno O, Azorin F (2010) A conserved arginine-rich motif within the hypervariable N-domain of Drosophila centromeric histone H3 (CenH3) mediates BubR1 recruitment. PLoS One 5: e13747. doi: 10.1371/journal.pone.0013747 21060784
69. van Bemmel JG, Pagie L, Braunschweig U, Brugman W, Meuleman W, et al. (2010) The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome. PLoS One 5: e15013. doi: 10.1371/journal.pone.0015013 21124834
70. Vazquez J, Schedl P (1994) Sequences required for enhancer blocking activity of scs are located within two nuclease-hypersensitive regions. The EMBO journal 13: 5984–5993. 7813436
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 8
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
Nejčtenější v tomto čísle
- Genomic imprinting: An epigenetic regulatory system
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans