Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics
Autoři:
Georgia Doing aff001; Katja Koeppen aff001; Patricia Occipinti aff001; Colleen E. Harty aff001; Deborah A. Hogan aff001
Působiště autorů:
Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
aff001
Vyšlo v časopise:
Conditional antagonism in co-cultures of Pseudomonas aeruginosa and Candida albicans: An intersection of ethanol and phosphate signaling distilled from dual-seq transcriptomics. PLoS Genet 16(8): e32767. doi:10.1371/journal.pgen.1008783
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008783
Souhrn
Pseudomonas aeruginosa and Candida albicans are opportunistic pathogens whose interactions involve the secreted products ethanol and phenazines. Here, we describe the role of ethanol in mixed-species co-cultures by dual-seq analyses. P. aeruginosa and C. albicans transcriptomes were assessed after growth in mono-culture or co-culture with either ethanol-producing C. albicans or a C. albicans mutant lacking the primary ethanol dehydrogenase, Adh1. Analysis of the RNA-Seq data using KEGG pathway enrichment and eADAGE methods revealed several P. aeruginosa responses to C. albicans-produced ethanol including the induction of a non-canonical low-phosphate response regulated by PhoB. C. albicans wild type, but not C. albicans adh1Δ/Δ, induces P. aeruginosa production of 5-methyl-phenazine-1-carboxylic acid (5-MPCA), which forms a red derivative within fungal cells and exhibits antifungal activity. Here, we show that C. albicans adh1Δ/Δ no longer activates P. aeruginosa PhoB and PhoB-regulated phosphatase activity, that exogenous ethanol complements this defect, and that ethanol is sufficient to activate PhoB in single-species P. aeruginosa cultures at permissive phosphate levels. The intersection of ethanol and phosphate in co-culture is inversely reflected in C. albicans; C. albicans adh1Δ/Δ had increased expression of genes regulated by Pho4, the C. albicans transcription factor that responds to low phosphate, and Pho4-dependent phosphatase activity. Together, these results show that C. albicans-produced ethanol stimulates P. aeruginosa PhoB activity and 5-MPCA-mediated antagonism, and that both responses are dependent on local phosphate concentrations. Further, our data suggest that phosphate scavenging by one species improves phosphate access for the other, thus highlighting the complex dynamics at play in microbial communities.
Klíčová slova:
Biosynthesis – Candida albicans – Ethanol – Gene expression – Phosphatases – Phosphates – Pigments – Pseudomonas aeruginosa
Zdroje
1. Hughes WT, Kim HK. Mycoflora in cystic fibrosis: some ecologic aspects of Pseudomonas aeruginosa and Candida albicans. Mycopathol Mycol Appl. 1973;50(3):261–9. Epub 1973/07/31. doi: 10.1007/BF02053377 4199669.
2. Grahl N, Dolben EL, Filkins LM, Crocker AW, Willger SD, Morrison HG, et al. Profiling of bacterial and fungal microbial communities in cystic fibrosis sputum using RNA. mSphere. 2018;3(4):e00292–18. doi: 10.1128/mSphere.00292-18 30089648.
3. Azoulay E, Timsit J-F, Tafflet M, de Lassence A, Darmon M, Zahar J-R, et al. Candida colonization of the respiratory tract and subsequent Pseudomonas ventilator-associated pneumonia. Chest. 2006;129(1):110–7. https://doi.org/10.1378/chest.129.1.110 16424420
4. Falleiros de Padua RA, Norman Negri MF, Svidzinski AE, Nakamura CV, Svidzinski TI. Adherence of Pseudomonas aeruginosa and Candida albicans to urinary catheters. Rev Iberoam Micol. 2008;25(3):173–5. Epub 2008/09/13. doi: 10.1016/s1130-1406(08)70040-8 18785788.
5. Gupta N, Haque A, Mukhopadhyay G, Narayan RP, Prasad R. Interactions between bacteria and Candida in the burn wound. Burns. 2005;31(3):375–8. https://doi.org/10.1016/j.burns.2004.11.012 15774298
6. Nseir S, Jozefowicz E, Cavestri B, Sendid B, Di Pompeo C, Dewavrin F, et al. Impact of antifungal treatment on Candida–Pseudomonas interaction: a preliminary retrospective case–control study. Intensive Care Med. 2007;33(1):137–42. doi: 10.1007/s00134-006-0422-0 17115135
7. Pierce GE. Pseudomonas aeruginosa, Candida albicans, and device-related nosocomial infections: implications, trends, and potential approaches for control. J Ind Microbiol Biotechnol. 2005;32(7):309–18. doi: 10.1007/s10295-005-0225-2 15868157
8. Kerr JR. Suppression of fungal growth exhibited by Pseudomonas aeruginosa. J Clin Microbiol. 1994;32(2):525–7. doi: 10.1128/JCM.32.2.525-527.1994 8150966.
9. Bakare N, Rickerts V, Bargon J, Just-Nubling G. Prevalence of Aspergillus fumigatus and other fungal species in the sputum of adult patients with cystic fibrosis. Mycoses. 2003;46(1–2):19–23. Epub 2003/02/18. doi: 10.1046/j.1439-0507.2003.00830.x 12588478.
10. Kaleli I, Cevahir N, Demir M, Yildirim U, Sahin R. Anticandidal activity of Pseudomonas aeruginosa strains isolated from clinical specimens. Mycoses. 2007;50(1):74–8. Epub 2007/02/17. doi: 10.1111/j.1439-0507.2006.01322.x 17302753.
11. Bauernfeind A, Bertele RM, Harms K, Horl G, Jungwirth R, Petermuller C, et al. Qualitative and quantitative microbiological analysis of sputa of 102 patients with cystic fibrosis. Infection. 1987;15(4):270–7. Epub 1987/07/01. doi: 10.1007/BF01644137 3117700.
12. Bandara H, Yau JYY, Watt RM, Jin LJ, Samaranayake LP. Pseudomonas aeruginosa inhibits in-vitro Candida biofilm development. BMC Microbiol. 2010;10(1):125. doi: 10.1186/1471-2180-10-125 20416106
13. Bergeron AC, Seman BG, Hammond JH, Archambault LS, Hogan DA, Wheeler RT. Candida albicans and Pseudomonas aeruginosa interact to enhance virulence of mucosal infection in transparent zebrafish. Infect Immun. 2017;85(11):e00475–17. doi: 10.1128/IAI.00475-17 28847848
14. Brand A, Barnes JD, Mackenzie KS, Odds FC, Gow NAR. Cell wall glycans and soluble factors determine the interactions between the hyphae of Candida albicans and Pseudomonas aeruginosa. FEMS Microbiol Lett. 2008;287(1):48–55. doi: 10.1111/j.1574-6968.2008.01301.x 18680523
15. Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, et al. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis. PLoS Path. 2015;11(8):e1005129–e. doi: 10.1371/journal.ppat.1005129 26313907.
16. Purschke FG, Hiller E, Trick I, Rupp S. Flexible survival strategies of Pseudomonas aeruginosa in biofilms result in increased fitness compared with Candida albicans. Molecular & Cellular Proteomics. 2012;11(12):1652–69. doi: 10.1074/mcp.M112.017673 22942357
17. Trejo-Hernández A, Andrade-Domínguez A, Hernández M, Encarnación S. Interspecies competition triggers virulence and mutability in Candida albicans–Pseudomonas aeruginosa mixed biofilms. The ISME Journal. 2014;8(10):1974–88. doi: 10.1038/ismej.2014.53 24739628
18. Cugini C, Morales DK, Hogan DA. Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains. Microbiology. 2010;156(Pt 10):3096–107. doi: 10.1099/mic.0.037911-0 20656785
19. De Sordi L, Mühlschlegel FA. Quorum sensing and fungal–bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Res. 2009;9(7):990–9. doi: 10.1111/j.1567-1364.2009.00573.x 19845041
20. Fourie R, Ells R, Swart CW, Sebolai OM, Albertyn J, Pohl CH. Candida albicans and Pseudomonas aeruginosa Interaction, with Focus on the Role of Eicosanoids. Front Physiol. 2016;7(64). doi: 10.3389/fphys.2016.00064 26955357
21. Hogan DA, Vik Å, Kolter R. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol. 2004;54(5):1212–23. doi: 10.1111/j.1365-2958.2004.04349.x 15554963
22. Holcombe LJ, McAlester G, Munro CA, Enjalbert B, Brown AJP, Gow NAR, et al. Pseudomonas aeruginosa secreted factors impair biofilm development in Candida albicans. Microbiology. 2010;156(5):1476–86. https://doi.org/10.1099/mic.0.037549-0.
23. McAlester G, O'Gara F, Morrissey JP. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. J Med Microbiol. 2008;57(Pt 5):563–9. Epub 2008/04/26. doi: 10.1099/jmm.0.47705-0 18436588.
24. Sakhtah H, Koyama L, Zhang Y, Morales DK, Fields BL, Price-Whelan A, et al. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc Natl Acad Sci U S A. 2016;113(25):E3538–47. doi: 10.1073/pnas.1600424113 27274079
25. Morales DK, Jacobs NJ, Rajamani S, Krishnamurthy M, Cubillos-Ruiz JR, Hogan DA. Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol. 2010;78(6):1379–92. doi: 10.1111/j.1365-2958.2010.07414.x 21143312
26. Morales DK, Grahl N, Okegbe C, Dietrich LEP, Jacobs NJ, Hogan DA. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. mBio. 2013;4(1):e00526–12. doi: 10.1128/mBio.00526-12 23362320
27. Gibson J, Sood A, Hogan DA. Pseudomonas aeruginosa-Candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl Environ Microbiol. 2009;75(2):504–13. doi: 10.1128/AEM.01037-08 19011064
28. Cugini C, Calfee MW, Farrow JM, Morales DK, Pesci EC, Hogan DA. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol. 2007;65(4):896–906. doi: 10.1111/j.1365-2958.2007.05840.x 17640272
29. Chen AI, Dolben EF, Okegbe C, Harty CE, Golub Y, Thao S, et al. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines. PLoS Path. 2014;10(10):e1004480–e. doi: 10.1371/journal.ppat.1004480 25340349
30. Kerr JR, Taylor GW, Rutman A, Høiby N, Cole PJ, Wilson R. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol. 1999;52(5):385–7. doi: 10.1136/jcp.52.5.385 10560362.
31. Harty CE, Martins D, Doing G, Mould DL, Clay ME, Occhipinti P, et al. Ethanol stimulates trehalose production through a SpoT-DksA-AlgU-dependent pathway in Pseudomonas aeruginosa. J Bacteriol. 2019;201(12):e00794–18. doi: 10.1128/JB.00794-18 30936375
32. Lewis KA, Baker AE, Chen AI, Harty CE, Kuchma SL, O'Toole GA, et al. Ethanol decreases Pseudomonas aeruginosa flagellar motility through the regulation of flagellar stators. J Bacteriol. 2019;201(18):e00285–19. Epub 2019/05/22. doi: 10.1128/JB.00285-19 31109994.
33. DeVault JD, Kimbara K, Chakrabarty AM. Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa. Mol Microbiol. 1990;4(5):737–45. doi: 10.1111/j.1365-2958.1990.tb00644.x 2167423
34. Aendekerk S, Diggle SP, Song Z, Hoiby N, Cornelis P, Williams P, et al. The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology. 2005;151(Pt 4):1113–25. Epub 2005/04/09. doi: 10.1099/mic.0.27631-0 15817779.
35. Bains M, Fernández L, Hancock REW. Phosphate starvation promotes swarming motility and cytotoxicity of Pseudomonas aeruginosa. Appl Environ Microbiol. 2012;78(18):6762–8. doi: 10.1128/AEM.01015-12 22773629
36. Blus-Kadosh I, Zilka A, Yerushalmi G, Banin E. The effect of pstS and phoB on quorum sensing and swarming motility in Pseudomonas aeruginosa. PLoS One. 2013;8(9):e74444–e. doi: 10.1371/journal.pone.0074444 24023943
37. Faure LM, Llamas MA, Bastiaansen KC, de Bentzmann S, Bigot S. Phosphate starvation relayed by PhoB activates the expression of the Pseudomonas aeruginosa vreI ECF factor and its target genes. Microbiology. 2013;159(Pt_7):1315–27. doi: 10.1099/mic.0.067645-0 23657684
38. Haddad A, Jensen V, Becker T, Haussler S. The Pho regulon influences biofilm formation and type three secretion in Pseudomonas aeruginosa. Environ Microbiol Rep. 2009;1(6):488–94. doi: 10.1111/j.1758-2229.2009.00049.x 23765926
39. Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, et al. RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol. 2006;188(24):8601–6. doi: 10.1128/JB.01378-06 17028277
40. Lamarche MG, Wanner BL, Crépin S, Harel J. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev. 2008;32(3):461–73. doi: 10.1111/j.1574-6976.2008.00101.x 18248418
41. Quesada JM, Otero-Asman JR, Bastiaansen KC, Civantos C, Llamas MA. The activity of the Pseudomonas aeruginosa virulence regulator σVreI is modulated by the anti-σ factor VreR and the transcription factor PhoB. Front Microbiol. 2016;7:1159-. doi: 10.3389/fmicb.2016.01159 27536271
42. Shoriridge VD, Lazdunski A, Vasil ML. Osmoprotectants and phosphate regulate expression of phospholipase C in Pseudomonas aeruginosa. Mol Microbiol. 1992;6(7):863–71. doi: 10.1111/j.1365-2958.1992.tb01537.x 1602966
43. Zaborin A, Gerdes S, Holbrook C, Liu DC, Zaborina OY, Alverdy JC. Pseudomonas aeruginosa overrides the virulence inducing effect of opioids when it senses an abundance of phosphate. PLoS One. 2012;7(4):e34883–e. doi: 10.1371/journal.pone.0034883 22514685
44. Zaborin A, Romanowski K, Gerdes S, Holbrook C, Lepine F, Long J, et al. Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1. Proc Natl Acad Sci U S A. 2009;106(15):6327–32. doi: 10.1073/pnas.0813199106 19369215
45. Chand NS, Lee JS-W, Clatworthy AE, Golas AJ, Smith RS, Hung DT. The sensor kinase KinB regulates virulence in acute Pseudomonas aeruginosa infection. J Bacteriol. 2011;193(12):2989–99. doi: 10.1128/JB.01546-10 21515773
46. Cornforth DM, Dees JL, Ibberson CB, Huse HK, Mathiesen IH, Kirketerp-Møller K, et al. Pseudomonas aeruginosa transcriptome during human infection. Proc Natl Acad Sci U S A. 2018;115(22):E5125–E34. doi: 10.1073/pnas.1717525115 29760087
47. Cox CD, Adams P. Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect Immun. 1985;48(1):130. doi: 10.1128/IAI.48.1.130-138.1985 3156815
48. Damron FH, Oglesby-Sherrouse AG, Wilks A, Barbier M. Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Sci Rep. 2016;6(1):39172-. doi: 10.1038/srep39172 27982111
49. Damron FH, Qiu D, Yu HD. The Pseudomonas aeruginosa sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis. J Bacteriol. 2009;191(7):2285–95. Epub 2009/01/23. doi: 10.1128/JB.01490-08 19168621.
50. Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett. 2017;364(11). doi: 10.1093/femsle/fnx104 28510688
51. Liu PV, Shokrani F. Biological activities of pyochelins: iron-chelating agents of Pseudomonas aeruginosa. Infect Immun. 1978;22(3):878–90. Epub 1978/12/01. doi: 10.1128/IAI.22.3.878-890.1978 103839.
52. Schmidberger A, Henkel M, Hausmann R, Schwartz T. Influence of ferric iron on gene expression and rhamnolipid synthesis during batch cultivation of Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol. 2014;98(15):6725–37. Epub 2014/04/23. doi: 10.1007/s00253-014-5747-y 24752844.
53. Tan J, Doing G, Lewis KA, Price CE, Chen KM, Cady KC, et al. Unsupervised extraction of stable expression signatures from public compendia with an ensemble of neural networks. Cell Systems. 2017;5(1):63–71.e6. doi: 10.1016/j.cels.2017.06.003 28711280
54. Hogan DA, Kolter R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science. 2002;296(5576):2229–32. doi: 10.1126/science.1070784 12077418
55. Bielecki P, Jensen V, Schulze W, Gödeke J, Strehmel J, Eckweiler D, et al. Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa. Nucleic Acids Res. 2015;43(13):6413–25. doi: 10.1093/nar/gkv599 26082498
56. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface. 2018;15(141):20170387. doi: 10.1098/rsif.2017.0387 29618526
57. Greene CS, Foster JA, Stanton BA, Hogan DA, Bromberg Y. Computational approaches to study microbes and microbiomes. Pacific Symposium on Biocomputing. 2016;21:557–67. doi: 10.1142/9789814749411_0051 26776218
58. Taroni JN, Greene CS, Martyanov V, Wood TA, Christmann RB, Farber HW, et al. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis. Genome Med. 2017;9(1):27. doi: 10.1186/s13073-017-0417-1 28330499
59. Way GP, Greene CS. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders. Pac Symp Biocomput. 2018;23:80–91. doi: 10.1142/9789813235533_0008 29218871
60. Zhu Q, Wong AK, Krishnan A, Aure MR, Tadych A, Zhang R, et al. Targeted exploration and analysis of large cross-platform human transcriptomic compendia. Nat Methods. 2015;12(3):211–4. doi: 10.1038/nmeth.3249 25581801
61. Taroni JN, Grayson PC, Hu Q, Eddy S, Kretzler M, Merkel PA, et al. MultiPLIER: A transfer learning framework for transcriptomics reveals systemic features of rare disease. Cell Systems. 2019;8(5):380–94.e4. Epub 2019/05/24. doi: 10.1016/j.cels.2019.04.003 31121115.
62. Chen KM, Tan J, Way GP, Doing G, Hogan DA, Greene CS. PathCORE-T: identifying and visualizing globally co-occurring pathways in large transcriptomic compendia. BioData Mining. 2018;11(1):14-. doi: 10.1186/s13040-018-0175-7 29988723
63. Tan J, Hammond JH, Hogan DA, Greene CS. ADAGE-based integration of publicly svailable Pseudomonas aeruginosa gene expression data with denoising autoencoders illuminates microbe-host interactions. mSystems. 2016;1(1):e00025–15. doi: 10.1128/mSystems.00025-15 27822512
64. Tan J, Huyck M, Hu D, Zelaya RA, Hogan DA, Greene CS. ADAGE signature analysis: differential expression analysis with data-defined gene sets. BMC Bioinformatics. 2017;18(1):512-. doi: 10.1186/s12859-017-1905-4 29166858
65. Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS, et al. Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity. Proceedings of the National Academy of Sciences. 2012;109(47):19420–5. doi: 10.1073/pnas.1213901109 23129634
66. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol. 2001;183(21):6454–65. doi: 10.1128/JB.183.21.6454-6465.2001 11591691
67. Lindsay AK, Morales DK, Liu Z, Grahl N, Zhang A, Willger SD, et al. Analysis of Candida albicans mutants defective in the Cdk8 module of mediator reveal links between metabolism and biofilm formation. PLoS Genet. 2014;10(10):e1004567. Epub 2014/10/03. doi: 10.1371/journal.pgen.1004567 25275466.
68. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. Epub 1999/12/11. doi: 10.1093/nar/28.1.27 10592173.
69. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47(D1):D590–d5. Epub 2018/10/16. doi: 10.1093/nar/gky962 30321428.
70. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51. Epub 2019/08/24. doi: 10.1002/pro.3715 31441146.
71. Grahl N, Demers EG, Lindsay AK, Harty CE, Willger SD, Piispanen AE, et al. Mitochondrial activity and Cyr1 are key regulators of Ras1 Activation of C. albicans virulence pathways. PLoS Path. 2015;11(8):e1005133. doi: 10.1371/journal.ppat.1005133 26317337
72. Kwak MK, Ku M, Kang SO. Inducible NAD(H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans. Biochimica et Biophysica Acta (BBA)—General Subjects. 2018;1862(1):18–39. Epub 2017/10/12. doi: 10.1016/j.bbagen.2017.10.003 29017767.
73. Kwak MK, Ku M, Kang SO. NAD(+)-linked alcohol dehydrogenase 1 regulates methylglyoxal concentration in Candida albicans. FEBS Lett. 2014;588(7):1144–53. Epub 2014/03/13. doi: 10.1016/j.febslet.2014.02.042 24607541.
74. Rampioni G, Falcone M, Heeb S, Frangipani E, Fletcher MP, Dubern JF, et al. Unravelling the genome-wide contributions of specific 2-Alkyl-4-quinolones and PqsE to quorum sensing in Pseudomonas aeruginosa. PLoS Pathog. 2016;12(11):e1006029. Epub 2016/11/17. doi: 10.1371/journal.ppat.1006029 27851827.
75. Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol. 2013;9(5):339–43. Epub 2013/04/02. doi: 10.1038/nchembio.1225 23542643.
76. Meng X, Ahator SD, Zhang L-H. Molecular mechanisms of phosphate stress activation of Pseudomonas aeruginosa quorum sensing systems. mSphere. 2020;5(2):e00119–20. doi: 10.1128/mSphere.00119-20 32188749
77. Schuster M, Lostroh CP, Ogi T, Greenberg EP. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol. 2003;185(7):2066–79. doi: 10.1128/jb.185.7.2066-2079.2003 12644476
78. Déziel E, Gopalan S, Tampakaki AP, Lépine F, Padfield KE, Saucier M, et al. The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-homoserine lactones. Molecular Microbiology. 2005;55(4):998–1014. doi: 10.1111/j.1365-2958.2004.04448.x 15686549
79. Hammond JH, Dolben EF, Smith TJ, Bhuju S, Hogan DA. Links between Anr and Quorum Sensing in Pseudomonas aeruginosa Biofilms. J Bacteriol. 2015;197(17):2810–20. Epub 2015/06/17. doi: 10.1128/JB.00182-15 26078448.
80. Llamas MA, van der Sar A, Chu BCH, Sparrius M, Vogel HJ, Bitter W. A novel extracytoplasmic function (ECF) sigma factor regulates virulence in Pseudomonas aeruginosa. PLoS Path. 2009;5(9):e1000572. doi: 10.1371/journal.ppat.1000572 19730690
81. Filloux A, Bally M, Soscia C, Murgier M, Lazdunski A. Phosphate regulation in Pseudomonas aeruginosa: Cloning of the alkaline phosphatase gene and identification of phoB- and phoR-like genes. MGG Molecular & General Genetics. 1988;212(3):510–3. doi: 10.1007/BF00330857 3138529
82. Monds RD, Newell PD, Schwartzman JA, O'Toole GA. Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Appl Environ Microbiol. 2006;72(3):1910–24. doi: 10.1128/AEM.72.3.1910-1924.2006 16517638
83. Monds RD, Silby MW, Mahanty HK. Expression of the Pho regulon negatively regulates biofilm formation by Pseudomonas aureofaciens PA147-2. Mol Microbiol. 2001;42(2):415–26. doi: 10.1046/j.1365-2958.2001.02641.x 11703664
84. Horwitz JP, Chua J, Noel M, Donatti JT, Freisler J. Substrates for cytochemical demonstration of enzyme activity. II. Some dihalo-3-indolyl phosphates and sulfates. Journal of Medical Chemistry. 1966;9(3):447. Epub 1966/05/01. doi: 10.1021/jm00321a059 5960940.
85. Chamnongpol S, Groisman EA. Acetyl phosphate-dependent activation of a mutant PhoP response regulator that functions independently of its cognate sensor kinase. J Mol Biol. 2000;300(2):291–305. https://doi.org/10.1006/jmbi.2000.3848 10873466
86. Deretic V, Leveau JHJ, Mohr CD, Hibler NS. In vitro phosphorylation of AlgR, a regulator of mucoidy in Pseudomonas aeruginosa, by a histidine protein kinase and effects of small phospho-donor molecules. Mol Microbiol. 1992;6(19):2761–7. doi: 10.1111/j.1365-2958.1992.tb01455.x 1435255
87. Hiratsu K, Nakata A, Shinagawa H, Makino K. Autophosphorylation and activation of transcriptional activator PhoB of Escherichia coli by acetyl phosphate in vitro. Gene. 1995;161(1):7–10. https://doi.org/10.1016/0378-1119(95)00259-9 7642140
88. Kim S-K, Wilmes-Riesenberg MR, Wanner BL. Involvement of the sensor kinase EnvZ in the in vivo activation of the response-regulator PhoB by acetyl phosphate. Mol Microbiol. 1996;22(1):135–47. doi: 10.1111/j.1365-2958.1996.tb02663.x 8899716
89. Ikeh MAC, Kastora SL, Day AM, Herrero-de-Dios CM, Tarrant E, Waldron KJ, et al. Pho4 mediates phosphate acquisition in Candida albicans and is vital for stress resistance and metal homeostasis. Mol Biol Cell. 2016;27(17):2784–801. doi: 10.1091/mbc.E16-05-0266 27385340.
90. Liu N-N, Flanagan PR, Zeng J, Jani NM, Cardenas ME, Moran GP, et al. Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition. Proceedings of the National Academy of Sciences. 2017;114(24):6346–51. doi: 10.1073/pnas.1617799114 28566496
91. Lev S, Djordjevic JT. Why is a functional PHO pathway required by fungal pathogens to disseminate within a phosphate-rich host: A paradox explained by alkaline pH-simulated nutrient deprivation and expanded PHO pathway function. PLoS Path. 2018;14(6):e1007021–e. doi: 10.1371/journal.ppat.1007021 29928051.
92. Liu N-N, Uppuluri P, Broggi A, Besold A, Ryman K, Kambara H, et al. Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence. PLoS Path. 2018;14(7):e1007076. doi: 10.1371/journal.ppat.1007076 30059535
93. Urrialde V, Prieto D, Pla J, Alonso-Monge R. The Candida albicans Pho4 transcription factor mediates susceptibility to stress and influences fitness in a mouse commensalism model. Front Microbiol. 2016;7(1062). doi: 10.3389/fmicb.2016.01062 27458452
94. Crocker AW, Harty CE, Hammond JH, Willger SD, Salazar P, Botelho NJ, et al. Pseudomonas aeruginosa ethanol oxidation by AdhA in low oxygen environments. J Bacteriol. 2019:JB.00393-19. doi: 10.1128/jb.00393-19 31527114
95. Mern DS, Ha S-W, Khodaverdi V, Gliese N, Görisch H. A complex regulatory network controls aerobic ethanol oxidation in Pseudomonas aeruginosa: indication of four levels of sensor kinases and response regulators. Microbiology. 2010;156(5):1505–16. doi: 10.1099/mic.0.032847-0
96. Glasser NR, Kern SE, Newman DK. Phenazine redox cycling enhances anaerobic survival in Pseudomonas aeruginosa by facilitating generation of ATP and a proton-motive force. Mol Microbiol. 2014;92(2):399–412. Epub 2014/03/19. doi: 10.1111/mmi.12566 24612454.
97. Görisch H. The ethanol oxidation system and its regulation in Pseudomonas aeruginosa. Biochim Biophys Acta. 2003;1647(1):98–102. https://doi.org/10.1016/S1570-9639(03)00066-9.
98. Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67(7):2982–92. doi: 10.1128/AEM.67.7.2982-2992.2001 11425711.
99. Díaz-Pérez AL, Zavala-Hernández AN, Cervantes C, Campos-García J. The gnyRDBHAL cluster is involved in acyclic isoprenoid degradation in Pseudomonas aeruginosa. Appl Environ Microbiol. 2004;70(9):5102–10. doi: 10.1128/AEM.70.9.5102-5110.2004 15345388.
100. Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951;62(3):293–300. Epub 1951/09/01. doi: 10.1128/JB.62.3.293-300.1951 14888646.
101. Shanks RM, Caiazza NC, Hinsa SM, Toutain CM, O'Toole GA. Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria. Appl Environ Microbiol. 2006;72(7):5027–36. doi: 10.1128/AEM.00682-06 16820502.
102. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y, Algire MA, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329(5987):52–6. doi: 10.1126/science.1190719 20488990
103. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6(5):343–5. doi: 10.1038/nmeth.1318 19363495
104. Team RDC. R: A language and environment for statistical computing. Vienna, SAustria: R Foundation for Statistical Computing; 2010.
105. Wickham H. ggplot2: Elegent Graphics for Data Analysis. New York: Springer-Verlag; 2016.
106. Robinson M, McCarthy D, Smyth G. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40. doi: 10.1093/bioinformatics/btp616 19910308
107. Tenenbaum D. KEGGREST: Client-side REST access to KEGG. 2018.
108. Zuguang G, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016.
109. Miller JH. A Short Course in Bacterial Genetics: Cold Spring Harbor Press; 1992. 456 p.
110. Sacks LE. A pH gradient agar plate. Nature. 1956;178(4527):269–70. doi: 10.1038/178269a0 13358718
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 8
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Antibiotika na nachlazení nezabírají! Jak můžeme zpomalit šíření rezistence?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Genomic imprinting: An epigenetic regulatory system
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans