Genomic imprinting: An epigenetic regulatory system
Autoři:
Marisa S. Bartolomei aff001; Rebecca J. Oakey aff002; Anton Wutz aff003
Působiště autorů:
Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
aff001; Department of Medical & Molecular Genetics, King’s College London, London, United Kingdom
aff002; D-BIOL, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Hönggerberg, Zurich, Switzerland
aff003
Vyšlo v časopise:
Genomic imprinting: An epigenetic regulatory system. PLoS Genet 16(8): e1008970. doi:10.1371/journal.pgen.1008970
Kategorie:
Editorial
doi:
https://doi.org/10.1371/journal.pgen.1008970
Zdroje
1. Johnson DR. Hairpin-tail: a case of postreductional gene action in the mouse egg. Genetics. 1974;76: 795–805 4838760
2. Barlow DP, Stöger R, Herrmann BG, Saito K, Schweifer N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature. 1991;349: 84–87. doi: 10.1038/349084a0 1845916
3. Stöger R, Kubicka P, Liu CG, Kafri T, Razin A, Cedar H, et al. Maternal-specific methylation of the imprinted mouse Igf2r locus identifies the expressed locus as carrying the imprinting signal. Cell. 1993;73: 61–71. doi: 10.1016/0092-8674(93)90160-r 8462104
4. Ondičová M, Oakey RJ, Walsh CP. Is imprinting the result of “friendly fire” by the host defense system? PLoS Genet. 2020;16: e1008599. doi: 10.1371/journal.pgen.1008599 32271759
5. Latos PA, Pauler FM, Koerner MV, Şenergin HB, Hudson QJ, Stocsits RR, et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science. 2012;338: 1469–1472. doi: 10.1126/science.1228110 23239737
6. MacDonald W.A., Mann M.R.W. Long noncoding RNA functionality in imprinted domain regulation. PLoS Genet. 2020. doi: 10.1371/journal.pgen.1008930
7. Andergassen D, Muckenhuber M, Bammer PC, Kulinski TM, Theussl H-C, Shimizu T, et al. The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes. PLoS Genet. 2019;15: e1008268. doi: 10.1371/journal.pgen.1008268 31329595
8. Hanna CW. Placental imprinting: Emerging mechanisms and functions. PLoS Genet. 2020;16: e1008709. doi: 10.1371/journal.pgen.1008709 32324732
9. Li Y, Li J. Technical advances contribute to the study of genomic imprinting. PLoS Genet. 2019;15: e1008151. doi: 10.1371/journal.pgen.1008151 31220079
10. Loda A, Heard E. Xist RNA in action: Past, present, and future. PLoS Genet. 2019;15: e1008333. doi: 10.1371/journal.pgen.1008333 31537017
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 8
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Infekce se v Americe po příjezdu Kolumba šířily nesrovnatelně déle, než se traduje
Nejčtenější v tomto čísle
- Genomic imprinting: An epigenetic regulatory system
- Uptake of exogenous serine is important to maintain sphingolipid homeostasis in Saccharomyces cerevisiae
- A human-specific VNTR in the TRIB3 promoter causes gene expression variation between individuals
- Immediate activation of chemosensory neuron gene expression by bacterial metabolites is selectively induced by distinct cyclic GMP-dependent pathways in Caenorhabditis elegans