Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change
Autoři:
Jacob M. Daane aff001; Juliette Auvinet aff001; Alicia Stoebenau aff001; Donald Yergeau aff004; Matthew P. Harris aff002; H. William Detrich, III aff001
Působiště autorů:
Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, United States of America
aff001; Orthopaedic Research Laboratories, Department of Orthopaedic Surgery, Boston Children's Hospital, Boston, MA, United States of America
aff002; Department of Genetics, Harvard Medical School, Boston, MA, United States of America
aff003; Department of Biology, Northeastern University, Boston, MA, United States of America
aff004
Vyšlo v časopise:
Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change. PLoS Genet 16(10): e32767. doi:10.1371/journal.pgen.1009173
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009173
Souhrn
In the frigid, oxygen-rich Southern Ocean (SO), Antarctic icefishes (Channichthyidae; Notothenioidei) evolved the ability to survive without producing erythrocytes and hemoglobin, the oxygen-transport system of virtually all vertebrates. Here, we integrate paleoclimate records with an extensive phylogenomic dataset of notothenioid fishes to understand the evolution of trait loss associated with climate change. In contrast to buoyancy adaptations in this clade, we find relaxed selection on the genetic regions controlling erythropoiesis evolved only after sustained cooling in the SO. This pattern is seen not only within icefishes but also occurred independently in other high-latitude notothenioids. We show that one species of the red-blooded dragonfish clade evolved a spherocytic anemia that phenocopies human patients with this disease via orthologous mutations. The genomic imprint of SO climate change is biased toward erythrocyte-associated conserved noncoding elements (CNEs) rather than to coding regions, which are largely preserved through pleiotropy. The drift in CNEs is specifically enriched near genes that are preferentially expressed late in erythropoiesis. Furthermore, we find that the hematopoietic marrow of icefish species retained proerythroblasts, which indicates that early erythroid development remains intact. Our results provide a framework for understanding the interactions between development and the genome in shaping the response of species to climate change.
Klíčová slova:
Evolutionary developmental biology – Evolutionary genetics – Evolutionary rate – Genomics – Paleogenetics – Red blood cells – Sequence alignment – Erythropoiesis
Zdroje
1. Eastman JT. Antarctic Fish Biology: Evolution in a Unique Environment. San Diego, CA: Academic Press, Inc; 1993.
2. Egginton S. Blood rheology of Antarctic fishes: viscosity adaptations at very low temperatures. J Fish Biol. 1996;48: 513–521. doi: 10.1006/jfbi.1996.0049
3. di Prisco G, Giardina B, Avino RD, Condo SG, Bellellit A, Brunori M. Antarctic fish hemoglobin: an outline of the molecular structure and oyxgen binding properties—II. oxygen binding properties. Comp Biochem Physiol. 1988;90: 585–591.
4. Daane JM, Giordano D, Coppola D, di Prisco G, Detrich HW, Verde C. Adaptations to environmental change: Globin superfamily evolution in Antarctic fishes. Mar Genomics. 2020;49: 100724. doi: 10.1016/j.margen.2019.100724 31735579
5. Borley KA, Beers JM, Sidell BD. Phenylhydrazine-induced anemia causes nitric-oxide-mediated upregulation of the angiogenic pathway in Notothenia coriiceps. J Exp Biol. 2010;213: 2865–2872. doi: 10.1242/jeb.043281 20675556
6. di Prisco G, Macdonald, J A, Brunori M. Antarctic fishes survive exposure to carbon monoxide. Experientia. 1992;48: 473–475. doi: 10.1007/BF01928166 1601112
7. Nelson G. Effects of carbon monoxide in man: Exposure fatality studies. In: Hinschler MM, editor. Carbon Monoxide and Human Lethality: Fire and Non-fire Studies. New York: Taylor and Francis; 2006. pp. 3–62.
8. Daane JM, Dornburg A, Smits P, MacGuigan DJ, Brent Hawkins M, Near TJ, et al. Historical contingency shapes adaptive radiation in Antarctic fishes. Nat Ecol Evol. 2019;3: 1102–1109. doi: 10.1038/s41559-019-0914-2 31182814
9. Kim B-M, Amores A, Kang S, Ahn D, Kim J-H, Kim I-C, et al. Antarctic blackfin icefish genome reveals adaptations to extreme environments. Nat Ecol Evol. 2019;3: 469–478. doi: 10.1038/s41559-019-0812-7 30804520
10. Near TJ, Parker SK, Detrich HW III. A genomic fossil reveals key steps in hemoglobin loss by the Antarctic icefishes. Mol Biol Evol. 2006;23: 2008–2016. doi: 10.1093/molbev/msl071 16870682
11. Lau Y, Parker SK, Near TJ, III HWD. Evolution and Function of the Globin Intergenic Regulatory Regions of the Antarctic Dragonfishes (Notothenioidei: Bathydraconidae). Mol Biol Evol. 2012;29: 1071–1080. doi: 10.1093/molbev/msr278 22075115
12. Sidell BD, O’Brien KM. When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. J Exp Biol. 2006;209: 1791–802. doi: 10.1242/jeb.02091 16651546
13. Grove T, Hendrickson J, Sidell B. Two species of antarctic icefishes (genus Champsocephalus) share a common genetic lesion leading to the loss of myoglobin expression. Polar Biol. 2004;27: 579–585. doi: 10.1007/s00300-004-0634-0
14. Moylan TJ, Sidell BD. Concentrations of myoglobin and myoglobin mRNA in heart ventricles from Antarctic fishes. J Exp Biol. 2000;203: 1277–86. Available: http://www.ncbi.nlm.nih.gov/pubmed/10729277 10729277
15. Sidell BD, Vayda ME, Small DJ, Moylan TJ, Londraville RL, Yuan ML, et al. Variable expression of myoglobin among the hemoglobinless Antarctic icefishes. Proc Natl Acad Sci U S A. 1997;94: 3420–3424. doi: 10.1073/pnas.94.7.3420 9096409
16. Bilyk KT, Zhuang X, Murphy KR, Cheng C-HC. A tale of two genes: divergent evolutionary fate of haptoglobin and hemopexin in hemoglobinless Antarctic icefishes. J Exp Biol. 2019;222: jeb188573. doi: 10.1242/jeb.188573 30765469
17. Hureau C, Petit D, Fine J, Marneuc M. New cytological, biochemical and physiological data on the colorless blood of the Chaenichthyidae (Pisces,Teleosteans, Perciformes). In: Llano G, editor. Adaptations Within Antarctic Ecosystem—Proceedings of the 3rd SCAR Symposium on Antarctic Biology. Houston, TX: Gulf Publishing Co; 1977. pp. 459–477.
18. Barber DL, Mills Westermann JE, White MG. The blood cells of the Antarctic icefish Chaenocephalus aceratus Lönnberg: light and electron microscopic observations. J Fish Biol. 1981;19: 11–28. doi: 10.1111/j.1095-8649.1981.tb05807.x
19. Köhler S, Vasilevsky NA, Engelstad M, Foster E, McMurry J, Aymé S, et al. The human phenotype ontology in 2017. Nucleic Acids Res. 2017;45: D865–D876. doi: 10.1093/nar/gkw1039 27899602
20. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28: 495–501. doi: 10.1038/nbt.1630 20436461
21. Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, Global Rhythms, Aberrations in Global Climate 65Ma to Present. Science. 2001;292: 686–693. doi: 10.1126/science.1059412 11326091
22. Haq BU, HardenbolL J, Vail PR. Chronology of Fluctuating Sea Levels Since the Triassic. Science. 1987;235: 1156–1167. doi: 10.1126/science.235.4793.1156 17818978
23. Shevenell AE, Kennett JP, Lea DW. Middle Miocene Southern Ocean cooling and antarctic cryosphere expansion. Science. 2004;305: 1766–1770. doi: 10.1126/science.1100061 15375266
24. Shevenell AE, Ingalls AE, Domack EW, Kelly C. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature. 2011;470: 250–254. doi: 10.1038/nature09751 21307939
25. Hartman JD, Sangiorgi F, Salabarnada A, Peterse F, Houben AJP, Schouten S, et al. Paleoceanography and ice sheet variability offshore Wilkes Land, Antarctica–Part 3: Insights from Oligocene–Miocene TEX 86 -based sea surface temperature reconstructions. Clim Past. 2018;14: 1275–1297. doi: 10.5194/cp-14-1275-2018
26. Billups K, Schrag DP. Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18 O/ 16 O measurements on benthic foraminifera. Paleoceanography. 2002;17: 3-1-3–11. doi: 10.1029/2000PA000567
27. Plancq J, Mattioli E, Pittet B, Simon L, Grossi V. Productivity and sea-surface temperature changes recorded during the late Eocene–early Oligocene at DSDP Site 511 (South Atlantic). Palaeogeogr Palaeoclimatol Palaeoecol. 2014;407: 34–44. doi: 10.1016/j.palaeo.2014.04.016
28. Petersen S V., Schrag DP. Antarctic ice growth before and after the Eocene-Oligocene transition: New estimates from clumped isotope paleothermometry. Paleoceanography. 2015;30: 1305–1317. doi: 10.1002/2014PA002769
29. Beers JM, Sidell BD. Thermal tolerance of Antarctic notothenioid fishes correlates with level of circulating hemoglobin. Physiol Biochem Zool. 2011;84: 353–62. doi: 10.1086/660191 21743249
30. Near TJ, Dornburg A, Kuhn KL, Eastman JT, Pennington JN, Patarnello T, et al. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc Natl Acad Sci U S A. 2012;109: 3434–9. doi: 10.1073/pnas.1115169109 22331888
31. Dornburg A, Federman S, Lamb AD, Jones CD, Near TJ. Cradles and museums of Antarctic teleost biodiversity. Nat Ecol Evol. 2017;1: 1379–1384. doi: 10.1038/s41559-017-0239-y 29046532
32. Lux SE. Anatomy of the red cell membrane skeleton: Unanswered questions. Blood. 2016;127: 187–199. doi: 10.1182/blood-2014-12-512772 26537302
33. Tse W. Red blood cell membrane disorders. Br J Haematol. 2000; 2–13.
34. Cabantchik ZI. Erythrocyte membrane transport. Novartis Found Symp. 1999;226: 6–19. doi: 10.1002/9780470515730.ch2 10645535
35. Boron WF. Evaluating the role of carbonic anhydrases in the transport of HCO3−-related species. Biochim Biophys Acta—Proteins Proteomics. 2010;1804: 410–421. doi: 10.1016/j.bbapap.2009.10.021 19879980
36. Chung J, Chen C, Paw BH. Heme metabolism and erythropoiesis. Curr Opin Hematol. 2012;19: 156–162. doi: 10.1097/MOH.0b013e328351c48b 22406824
37. Dore LC, Crispino JD. Transcription factor networks in erythroid cell and megakaryocyte development. Blood. 2011;118: 231–239. doi: 10.1182/blood-2011-04-285981 21622645
38. Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development. 2018;145: dev151423. doi: 10.1242/dev.151423 29321181
39. Peters MJ, Parker SK, Grim J, Allard CAH, Levin J, Detrich HW III. Divergent Hemogen genes of teleosts and mammals share conserved roles in erythropoiesis: analysis using transgenic and mutant zebrafish. Biol Open. 2018;7: bio035576. doi: 10.1242/bio.035576 30097520
40. Yang L V., Nicholson RH, Kaplan J, Galy A, Li L. Hemogen is a novel nuclear factor specifically expressed in mouse hematopoietic development and its human homologue EDAG maps to chromosome 9q22, a region containing breakpoints of hematological neoplasms. Mech Dev. 2001;104: 105–111. doi: 10.1016/s0925-4773(01)00376-8 11404085
41. Marchesi VT, Steers E. Selective Solubilization of a Protein Component of the Red Cell Membrane. Science. 1968;159: 203–204. doi: 10.1126/science.159.3811.203 5634911
42. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42: D980–D985. doi: 10.1093/nar/gkt1113 24234437
43. Witeska M. Erythrocytes in teleost fishes: A review. Zool Ecol. 2013;23: 275–281. doi: 10.1080/21658005.2013.846963
44. Kingsley PD, Greenfest-Allen E, Frame JM, Bushnell TP, Malik J, Mcgrath KE, et al. Ontogeny of erythroid gene expression. Blood. 2013;121: e5–e13. doi: 10.1182/blood-2012-04-422394 23243273
45. Catton WT. Blood Cell Formation in Certain Teleost Fishes. Blood. 1951;6: 39–60. doi: 10.1182/blood.V6.1.39.39 14791599
46. Kondera E. Haematopoiesis and haematopoietic organs in fish. Rocz Nauk Pol Tow Zootech. 2019;15: 9–16. doi: 10.5604/01.3001.0013.4535
47. Fänge R. Blood cells, haemopoiesis and lymphomyeloid tissues in fish. Fish Shellfish Immunol. 1994;4: 405–411. doi: 10.1006/fsim.1994.1036
48. Montgomery J, Clements K. Disaptation and recovery in the evolution of Antarctic fishes. Trends Ecol Evol. 2000;15: 267–271. doi: 10.1016/s0169-5347(00)01896-6 10856946
49. Holeton GF. Oxygen uptake and circulation by a hemoglobinless antarctic fish (Chaenocephalus aceratus Lonnberg) compared with three red-blooded antartic fish. Comp Biochem Physiol. 1970;34: 457–471. doi: 10.1016/0010-406x(70)90185-4 5426570
50. Johnston IA, Fitch N, Zummo G, Wood RE, Harrison P, Tota B. Morphometric and ultrastructural features of the ventricular myocardium of the haemoglobin-less icefish Chaenocephalus aceratus. Comp Biochem Physiol Part A Physiol. 1983;76: 475–480. doi: 10.1016/0300-9629(83)90449-8
51. Feller G, Goessens G, Gerday C, Bassleer R. Heart structure and ventricular ultrastructure of hemoglobin- and myoglobin-free icefish Channichthys rhinoceratus. Cell Tissue Res. 1985;242: 669–676. doi: 10.1007/BF00225436 4075384
52. O’Brien KM, Sidell BD. The interplay among cardiac ultrastructure, metabolism and the expression of oxygen-binding proteins in Antarctic fishes. J Exp Biol. 2000;203: 1287–97. Available: http://www.ncbi.nlm.nih.gov/pubmed/10729278 10729278
53. Fitch NA, Johnson IA, Wood RE. Skeletal muscle capillary supply in a fish that lacks respiratory pigments. Respir Physiol. 1984;57: 201–211. doi: 10.1016/0034-5687(84)90093-8 6494646
54. Farrell AP, Jones DR. The heart. In: Hoar WS, Randall DJ, Farrell AP, editors. Fish Physiology, Vol XIIA. San Diego: Academic Press; 1992. pp. 1–88.
55. Hemmingsen EA. Respiratory and Cardiovascular Adaptations in Hemoglobin-Free Fish: Resolved and Unresolved Problems. In: Prisco G di, Maresca B, Tota B, editors. Biology of Antarctic Fish. New York: Springer Verlag; 1991. pp. 191–203.
56. Dollo L. Les Lois de l’evolution. Bull La Société Belge Géologie. 1893;7: 164–6. Available: https://paleoglot.org/files/Dollo_93.pdf
57. Gould SJ. Dollo on Dollo’s law: Irreversibility and the status of evolutionary laws. J Hist Biol. 1970;3: 189–212. doi: 10.1007/BF00137351 11609651
58. Schartl M. Beyond the zebrafish: diverse fish species for modeling human disease. Dis Model Mech. 2014;7: 181–92. doi: 10.1242/dmm.012245 24271780
59. Albertson RC, Cresko W, Detrich HW, Postlethwait JH. Evolutionary mutant models for human disease. Trends Genet. 2009;25: 74–81. doi: 10.1016/j.tig.2008.11.006 19108930
60. Hiller M, Schaar BT, Indjeian VB, Kingsley DM, Hagey LR, Bejerano G. A “forward genomics” approach links genotype to phenotype using independent phenotypic losses among related species. Cell Rep. 2012;2: 817–23. doi: 10.1016/j.celrep.2012.08.032 23022484
61. Yergeau DA, Cornell CN, Parker SK, Zhou Y, Detrich HW III. bloodthirsty, an RBCC/TRIM gene required for erythropoiesis in zebrafish. Dev Biol. 2005;283: 97–112. doi: 10.1016/j.ydbio.2005.04.006 15890331
62. Gallagher MD, Chen-Plotkin AS. The Post-GWAS Era: From Association to Function. Am J Hum Genet. 2018;102: 717–730. doi: 10.1016/j.ajhg.2018.04.002 29727686
63. Near TJ, Dornburg A, Harrington RC, Oliveira C, Pietsch TW, Thacker CE, et al. Identification of the notothenioid sister lineage illuminates the biogeographic history of an Antarctic adaptive radiation. BMC Evol Biol. 2015;15: 109. doi: 10.1186/s12862-015-0362-9 26062690
64. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30: 772–80. doi: 10.1093/molbev/mst010 23329690
65. Ranwez V, Harispe S, Delsuc F, Douzery EJP. MACSE: Multiple Alignment of Coding SEquences Accounting for Frameshifts and Stop Codons. Murphy WJ, editor. PLoS One. 2011;6: e22594. doi: 10.1371/journal.pone.0022594 21949676
66. Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015;43: W7–W14. doi: 10.1093/nar/gkv318 25883146
67. Kowalczyk A, Meyer WK, Partha R, Mao W, Clark NL, Chikina M. RERconverge: an R package for associating evolutionary rates with convergent traits. Valencia A, editor. Bioinformatics. 2019;35: 4815–4817. doi: 10.1093/bioinformatics/btz468 31192356
68. Partha R, Kowalczyk A, Clark NL, Chikina M. Robust Method for Detecting Convergent Shifts in Evolutionary Rates. Mol Biol Evol. 2019;36: 1817–1830. doi: 10.1093/molbev/msz107 31077321
69. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20: 110–21. doi: 10.1101/gr.097857.109 19858363
70. Hubisz MJ, Pollard KS, Siepel A. PHAST and RPHAST: phylogenetic analysis with space/time models. Brief Bioinform. 2011;12: 41–51. doi: 10.1093/bib/bbq072 21278375
71. Higgs DR, McGowan SJ, Soneji S, Merryweather-Clarke AT, Roberts DJ, Buckle VJ, et al. Global gene expression analysis of human erythroid progenitors. Blood. 2011;117: e96–e108. doi: 10.1182/blood-2010-07-290825 21270440
72. Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database. 2011;2011: bar030–bar030. doi: 10.1093/database/bar030 21785142
73. Daub JT, Moretti S, Davydov II, Excoffier L. Detection of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans. Mol Biol Evol. 2017;34: 1391–1402. doi: 10.1093/molbev/msx083 28333345
74. Smith CL, Eppig JT. The mammalian phenotype ontology: enabling robust annotation and comparative analysis. Wiley Interdiscip Rev Syst Biol Med. 2009;1: 390–399. doi: 10.1002/wsbm.44 20052305
75. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M, et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol. 2010;28: 1248–1250. doi: 10.1038/nbt1210-1248 21139605
76. Petryszak R, Keays M, Tang YA, Fonseca NA, Barrera E, Burdett T, et al. Expression Atlas update—An integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res. 2016;44: D746–D752. doi: 10.1093/nar/gkv1045 26481351
77. Smith SA, O’Meara BC. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics. 2012;28: 2689–2690. doi: 10.1093/bioinformatics/bts492 22908216
78. Detrich HW, Yergeau DA. Comparative genomics in erythropoietic gene discovery: Synergisms between the antarctic icefishes and the zebrafish. Methods Cell Biol. 2004;2004: 475–503. doi: 10.1016/s0091-679x(04)77026-0 15602928
79. Carson F, Matthews J, Pickett J. Preparation of tissues for laboratory examination. In: Race J, editor. Laboratory Medicine. New York: Harper and Rowe; 1980. pp. 1–57.
80. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9: 676–682. doi: 10.1038/nmeth.2019 22743772
81. Peters Michael J. Modeling the evolutionary loss of erythroid genes by Antarctic icefishes: analysis of the hemogen gene using transgenic and mutant zebrafish. Northeastern University. 2018. doi: 10.17760/D20293303
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 10
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Raději si zajděte na oční! Jak souvisí citlivost zraku s rozvojem demence?
- Co způsobuje pooperační infekce? Na vině může být i naše vlastní mikrobiota
- Čeká nás průlom v diagnostice karcinomu pankreatu?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
Nejčtenější v tomto čísle
- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- RNA-directed DNA Methylation
- The DNA methylome of human sperm is distinct from blood with little evidence for tissue-consistent obesity associations
- Correction: Molecular predictors of brain metastasis-related microRNAs in lung adenocarcinoma