Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO
Autoři:
Joe Weber aff001; Zeynep Kabakci aff001; Soumya Chaurasia aff001; Erich Brunner aff001; Christian F. Lehner aff001
Působiště autorů:
Department of Molecular Life Science (DMLS), University of Zurich, Zurich, Switzerland
aff001
Vyšlo v časopise:
Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO. PLoS Genet 16(10): e1008928. doi:10.1371/journal.pgen.1008928
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008928
Souhrn
Regular chromosome segregation during the first meiotic division requires prior pairing of homologous chromosomes into bivalents. During canonical meiosis, linkage between homologous chromosomes is maintained until late metaphase I by chiasmata resulting from meiotic recombination in combination with distal sister chromatid cohesion. Separase-mediated elimination of cohesin from chromosome arms at the end of metaphase I permits terminalization of chiasmata and homolog segregation to opposite spindle poles during anaphase I. Interestingly, separase is also required for bivalent splitting during meiosis I in Drosophila males, where homologs are conjoined by an alternative mechanism independent of meiotic recombination and cohesin. Here we report the identification of a novel alternative homolog conjunction protein encoded by the previously uncharacterized gene univalents only (uno). The univalents that are present in uno null mutants at the start of meiosis I, instead of normal bivalents, are segregated randomly. In wild type, UNO protein is detected in dots associated with bivalent chromosomes and most abundantly at the localized pairing site of the sex chromosomes. UNO is cleaved by separase. Expression of a mutant UNO version with a non-functional separase cleavage site restores homolog conjunction in a uno null background. However, separation of bivalents during meiosis I is completely abrogated by this non-cleavable UNO version. Therefore, we propose that homolog separation during Drosophila male meiosis I is triggered by separase-mediated cleavage of UNO.
Klíčová slova:
Anaphase – Centromeres – Drosophila melanogaster – Meiosis – Sex chromosomes – Spermatids – Spermatocytes – Testes
Zdroje
1. Nasmyth K. Cohesin. a catenase with separate entry and exit gates. Nature cell biology. 2011; 13: 1170–1177. doi: 10.1038/ncb2349
2. Hassler M, Shaltiel IA, Haering CH. Towards a Unified Model of SMC Complex Function. Current biology: CB. 2018; 28: R1266–R1281. doi: 10.1016/j.cub.2018.08.034
3. Michaelis C, Ciosk R, Nasmyth K. Cohesins. Chromosomal proteins that prevent premature separation of sister chromatids. Cell. 1997; 91: 35–45.
4. Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S-cerevisiae. Cell. 1997; 91: 47–57.
5. Uhlmann F, Nasmyth K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 1998; 8: 1095–1101.
6. Gruber S, Haering CH, Nasmyth K. Chromosomal cohesin forms a ring. Cell. 2003; 112: 765–77.
7. Haering CH, Schoffnegger D, Nishino T, Helmhart W, Nasmyth K, Löwe J. Structure and stability of cohesin’s Smc1-kleisin interaction. Molecular cell. 2004; 15: 951–964. doi: 10.1016/j.molcel.2004.08.030
8. Gligoris TG, Scheinost JC, Bürmann F, Petela N, Chan K-L, Uluocak P, et al. Closing the cohesin ring: structure and function of its Smc3-kleisin interface. Science. 2014; 346: 963–967. doi: 10.1126/science.1256917
9. Uhlmann F, Lottspeich F, Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature. 1999; 400: 37–42.
10. Uhlmann F, Wernic D, Poupart MA, Koonin EV, Nasmyth K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell. 2000; 103: 375–86.
11. Hauf S, Waizenegger IC, Peters JM. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science. 2001; 293: 1320–3.
12. Uhlmann F. Separase regulation during mitosis. Biochem Soc Symp. 2003: 243–251.
13. Funabiki H, Kumada K, Yanagida M. Fission yeast Cut1 and Cut2 are essential for sister separation, concentrate along the metaphase spindle and form large complexes. EMBO J. 1996; 15: 6617–6628.
14. Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M, Nasmyth K. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell. 1998; 93: 1067–1076.
15. Zou H, Mcgarry TJ, Bernal T, Kirschner MW. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science. 1999; 285: 418–422.
16. Luo S, Tong L. Molecular mechanism for the regulation of yeast separase by securin. Nature. 2017; 542: 255–259. doi: 10.1038/nature21061
17. Boland A, Martin TG, Zhang Z, Yang J, Bai X-C, Chang L, et al. Cryo-EM structure of a metazoan separase-securin complex at near-atomic resolution. Nature structural & molecular biology. 2017; 24: 414–418. doi: 10.1038/nsmb.3386
18. Zachariae W, Nasmyth K. Whose end is destruction. cell division and the anaphase-promoting complex. Genes & development. 1999; 13: 2039–2058.
19. Peters JM. The anaphase promoting complex/cyclosome. a machine designed to destroy. Nature reviews Molecular cell biology. 2006; 7: 644–656. doi: 10.1038/nrm1988
20. Zickler D, Kleckner N. A few of our favorite things. Pairing, the bouquet, crossover interference and evolution of meiosis. Seminars in cell & developmental biology. 2016; 54: 135–148. doi: 10.1016/j.semcdb.2016.02.024
21. Kurdzo EL, Dawson DS. Centromere pairing—tethering partner chromosomes in meiosis I. FEBS J. 2015; 282: 2458–2470. doi: 10.1111/febs.13280
22. Rubin T, Macaisne N, Huynh J-R. Mixing and Matching Chromosomes during Female Meiosis. Cells. 2020; 9. doi: 10.3390/cells9030696
23. Alleva B, Smolikove S. Moving and stopping: Regulation of chromosome movement to promote meiotic chromosome pairing and synapsis. Nucleus. 2017; 8: 613–624. doi: 10.1080/19491034.2017.1358329
24. Keeney S, Neale MJ. Initiation of meiotic recombination by formation of DNA double-strand breaks. mechanism and regulation. Biochem Soc Trans. 2006; 34: 523–525. doi: 10.1042/BST0340523
25. Hughes SE, Miller DE, Miller AL, Hawley RS. Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics. 2018; 208: 875–908. doi: 10.1534/genetics.117.300081
26. Cahoon CK, Hawley RS. Regulating the construction and demolition of the synaptonemal complex. Nature structural & molecular biology. 2016; 23: 369–377. doi: 10.1038/nsmb.3208
27. Buonomo SB, Clyne RK, Fuchs J, Loidl J, Uhlmann F, Nasmyth K. Disjunction of homologous chromosomes in meiosis I depends on proteolytic cleavage of the meiotic cohesin Rec8 by separin. Cell. 2000; 103: 387–98.
28. Siomos MF, Badrinath A, Pasierbek P, Livingstone D, White J, Glotzer M, et al. Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans. Current Biology. 2001; 11: 1825–35.
29. Petronczki M, Siomos MF, Nasmyth K. Un menage a quatre. the molecular biology of chromosome segregation in meiosis. Cell. 2003; 112: 423–40.
30. Watanabe Y, Nurse P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature. 1999; 400: 461–4.
31. Sakuno T, Watanabe Y. Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions. Chromosome research: an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology. 2009; 17: 239–249. doi: 10.1007/s10577-008-9013-y
32. Katis VL, Lipp JJ, Imre R, Bogdanova A, Okaz E, Habermann B, et al. Rec8 phosphorylation by casein kinase 1 and Cdc7-Dbf4 kinase regulates cohesin cleavage by separase during meiosis. Developmental cell. 2010; 18: 397–409. doi: 10.1016/j.devcel.2010.01.014
33. Tomkiel JE, Wakimoto BT, Briscoe A. Jr. The teflon gene is required for maintenance of autosomal homolog pairing at meiosis I in male Drosophila melanogaster. Genetics. 2001; 157: 273–281.
34. Arya GH, Lodico MJ, Ahmad OI, Amin R, Tomkiel JE. Molecular characterization of teflon, a gene required for meiotic autosome segregation in male Drosophila melanogaster. Genetics. 2006; 174: 125–134. doi: 10.1534/genetics.106.061556
35. Thomas SE, Soltani-Bejnood M, Roth P, Dorn R, Logsdon J. M. Jr., McKee BD. Identification of two proteins required for conjunction and regular segregation of achiasmate homologs in Drosophila male meiosis. Cell. 2005; 123: 555–568. doi: 10.1016/j.cell.2005.08.043
36. McKee BD, Karpen GH. Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis. Cell. 1990; 61: 61–72.
37. McKee BD, Habera L, Vrana JA. Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model for achiasmatic pairing. Genetics. 1992; 132: 529–544.
38. Thomas SE, McKee BD. Meiotic pairing and disjunction of mini-X chromosomes in drosophila is mediated by 240-bp rDNA repeats and the homolog conjunction proteins SNM and MNM. Genetics. 2007; 177: 785–799. doi: 10.1534/genetics.107.073866
39. McKee BD, Lumsden SE, Das S. The distribution of male meiotic pairing sites on chromosome- 2 of Drosophila-melanogaster—meiotic pairing and segregation of 2-y transpositions. Chromosoma. 1993; 102: 180–194.
40. Tsai JH, Yan R, McKee BD. Homolog pairing and sister chromatid cohesion in heterochromatin in Drosophila male meiosis I. Chromosoma. 2011; 120: 335–351. doi: 10.1007/s00412-011-0314-0
41. McKee BD, Yan R, Tsai JH. Meiosis in male Drosophila. Spermatogenesis. 2012; 2: 167–184. doi: 10.4161/spmg.21800
42. Buchner K, Roth P, Schotta G, Krauss V, Saumweber H, Reuter G, et al. Genetic and molecular complexity of the position effect variegation modifier mod(mdg4) in Drosophila. Genetics. 2000; 155: 141–157.
43. Labrador M, Mongelard F, Plata-Rengifo P, Baxter EM, Corces VG, Gerasimova TI. Protein encoding by both DNA strands. Nature. 2001; 409: 1000. doi: 10.1038/35059000
44. Soltani-Bejnood M, Thomas SE, Villeneuve L, Schwartz K, Hong CS, McKee BD. Role of the mod(mdg4) common region in homolog segregation in Drosophila male meiosis. Genetics. 2007; 176: 161–180. doi: 10.1534/genetics.106.063289
45. Chaharbakhshi E, Jemc JC. Broad-complex, tramtrack, and bric-à-brac (BTB) proteins: Critical regulators of development. Genesis. 2016; 54: 505–518. doi: 10.1002/dvg.22964
46. Toth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes & development. 1999; 13: 320–333.
47. Hara K, Zheng G, Qu Q, Liu H, Ouyang Z, Chen Z, et al. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nature structural & molecular biology. 2014; 21: 864–870. doi: 10.1038/nsmb.2880
48. Blattner AC, Chaurasia S, McKee BD, Lehner CF. Separase Is Required for Homolog and Sister Disjunction during Drosophila melanogaster Male Meiosis, but Not for Biorientation of Sister Centromeres. PLoS genetics. 2016; 12: e1005996. doi: 10.1371/journal.pgen.1005996
49. Cenci G, Bonaccorsi S, Pisano C, Verni F, Gatti M. Chromatin and microtubule organization during premeiotic, meiotic and early postmeiotic stages of Drosophila- melanogaster spermatogenesis. J. Cell Sci. 1994; 107: 3521–3534.
50. Sun MS, Weber J, Blattner AC, Chaurasia S, Lehner CF. MNM and SNM maintain but do not establish achiasmate homolog conjunction during Drosophila male meiosis. PLoS genetics. 2019; 15: e1008162. doi: 10.1371/journal.pgen.1008162
51. Brown JB, Boley N, Eisman R, May GE, Stoiber MH, Duff MO, et al. Diversity and dynamics of the Drosophila transcriptome. Nature. 2014; 512: 393–399. doi: 10.1038/nature12962
52. Chintapalli VR, Wang J, Dow JA. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature genetics. 2007; 39: 715–720. doi: 10.1038/ng2049
53. Blackmon H, Ross L, Bachtrog D. Sex Determination, Sex Chromosomes, and Karyotype Evolution in Insects. J Hered. 2017; 108: 78–93. doi: 10.1093/jhered/esw047
54. Quijano JC, Wisotzkey RG, Tran NL, Huang Y, Stinchfield MJ, Haerry TE, et al. lolal Is an Evolutionarily New Epigenetic Regulator of dpp Transcription during Dorsal-Ventral Axis Formation. Molecular biology and evolution. 2016; 33: 2621–2632. doi: 10.1093/molbev/msw132
55. Fuller MT. Spermatogenesis. In: Bate M, Martinez Arias A, editors. The development of Drosophila melanogaster. 1st ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1993. pp. 71–148.
56. Chaurasia S, Lehner CF. Dynamics and control of sister kinetochore behavior during the meiotic divisions in Drosophila spermatocytes. PLoS genetics. 2018; 14: e1007372. doi: 10.1371/journal.pgen.1007372
57. Jäger H, Herzig A, Lehner CF, Heidmann S. Drosophila separase is required for sister chromatid separation and binds to PIM and THR. Genes & development. 2001; 15: 2572–84.
58. Herzig A, Lehner CF, Heidmann S. Proteolytic cleavage of the THR subunit during anaphase limits Drosophila separase function. Genes & development. 2002; 16: 2443–54.
59. Sullivan M, Hornig NC, Porstmann T, Uhlmann F. Studies on substrate recognition by the budding yeast separase. The Journal of biological chemistry. 2004; 279: 1191–6.
60. Shindo N, Kumada K, Hirota T. Separase sensor reveals dual roles for separase coordinating cohesin cleavage and cdk1 inhibition. Developmental cell. 2012; 23: 112–123. doi: 10.1016/j.devcel.2012.06.015
61. Morgan TH. Complete linkage in the second chromosome of the male of Drosophila. Science. 1912; 36: 719–720. doi: 10.1126/science.36.934.718
62. Waizenegger IC, Hauf S, Meinke A, Peters JM. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell. 2000; 103: 399–410.
63. Rosen LE, Klebba JE, Asfaha JB, Ghent CM, Campbell MG, Cheng Y, et al. Cohesin cleavage by separase is enhanced by a substrate motif distinct from the cleavage site. Nature communications. 2019; 10: 5189. doi: 10.1038/s41467-019-13209-y
64. Matsuo K, Ohsumi K, Iwabuchi M, Kawamata T, Ono Y, Takahashi M. Kendrin is a novel substrate for separase involved in the licensing of centriole duplication. Current biology: CB. 2012; 22: 915–921. doi: 10.1016/j.cub.2012.03.048
65. Lee K, Rhee K. Separase-dependent cleavage of pericentrin B is necessary and sufficient for centriole disengagement during mitosis. Cell cycle. 2012; 11: 2476–2485. doi: 10.4161/cc.20878
66. Monen J, Hattersley N, Muroyama A, Stevens D, Oegema K, Desai A. Separase Cleaves the N-Tail of the CENP-A Related Protein CPAR-1 at the Meiosis I Metaphase-Anaphase Transition in C. elegans. PLoS ONE. 2015; 10: e0125382. doi: 10.1371/journal.pone.0125382
67. Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F. Kleisins. a superfamily of bacterial and eukaryotic SMC protein partners. Molecular cell. 2003; 11: 571–5.
68. Yan R, Thomas SE, Tsai JH, Yamada Y, McKee BD. SOLO. a meiotic protein required for centromere cohesion, coorientation, and SMC1 localization in Drosophila melanogaster. The Journal of cell biology. 2010; 188: 335–349. doi: 10.1083/jcb.200904040
69. Krishnan B, Thomas SE, Yan R, Yamada H, Zhulin IB, McKee BD. Sisters unbound is required for meiotic centromeric cohesion in Drosophila melanogaster. Genetics. 2014; 198: 947–965. doi: 10.1534/genetics.114.166009
70. Yan R, McKee BD. The cohesion protein SOLO associates with SMC1 and is required for synapsis, recombination, homolog bias and cohesion and pairing of centromeres in Drosophila Meiosis. PLoS genetics. 2013; 9: e1003637. doi: 10.1371/journal.pgen.1003637
71. Gyuricza MR, Manheimer KB, Apte V, Krishnan B, Joyce EF, McKee BD, et al. Dynamic and Stable Cohesins Regulate Synaptonemal Complex Assembly and Chromosome Segregation. Current biology: CB. 2016; 26: 1688–1698. doi: 10.1016/j.cub.2016.05.006
72. Tsai J-H, McKee BD. Homologous pairing and the role of pairing centers in meiosis. Journal of cell science. 2011; 124: 1955–1963. doi: 10.1242/jcs.006387
73. Parks AL, Cook KR, Belvin M, Dompe NA, Fawcett R, Huppert K, et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature genetics. 2004; 36: 288–292. doi: 10.1038/ng1312
74. Ryder E, Ashburner M, Bautista-Llacer R, Drummond J, Webster J, Johnson G, et al. The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics. 2007; 177: 615–629. doi: 10.1534/genetics.107.076216
75. Schuh M, Lehner CF, Heidmann S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Current biology: CB. 2007; 17: 237–243. doi: 10.1016/j.cub.2006.11.051
76. Chen D, Mckearin D. Dpp signaling silences bam transcription directly to establish asymmetric divisions of germline stem cells. Current biology: CB. 2003; 13: 1786–1791.
77. Althoff F, Karess RE, Lehner CF. Spindle checkpoint-independent inhibition of mitotic chromosome segregation by Drosophila Mps1. Mol Biol Cell. 2012; 23: 2275–2291. doi: 10.1091/mbc.E12-02-0117
78. Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature. 2007; 448: 151–156. doi: 10.1038/nature05954
79. Port F, Chen HM, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 2014; 111: E2967–76. doi: 10.1073/pnas.1405500111
80. Schittenhelm RB, Heeger S, Althoff F, Walter A, Heidmann S, Mechtler K, et al. Spatial organization of a ubiquitous eukaryotic kinetochore protein network in Drosophila chromosomes. Chromosoma. 2007; 116: 385–402.
81. Makarova O, Kamberov E, Margolis B. Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques. 2000; 29: 970–972. doi: 10.2144/00295bm08
82. Bischof J, Bjorklund M, Furger E, Schertel C, Taipale J, Basler K. A versatile platform for creating a comprehensive UAS-ORFeome library in Drosophila. Development. 2013; 140: 2434–2442. doi: 10.1242/dev.088757
83. Lidsky PV, Sprenger F, Lehner CF. Distinct modes of centromere protein dynamics during cell cycle progression in Drosophila S2R+ cells. Journal of cell science. 2013; 126: 4782–4793. doi: 10.1242/jcs.134122
84. Jankovics F, Brunner D. Transiently reorganized microtubules are essential for zippering during dorsal closure in Drosophila melanogaster. Developmental cell. 2006; 11: 375–385. doi: 10.1016/j.devcel.2006.07.014
85. Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nature methods. 2008; 5: 545–551. doi: 10.1038/nmeth.1209
86. Urban E, Nagarkar-Jaiswal S, Lehner CF, Heidmann SK. The cohesin subunit Rad21 is required for synaptonemal complex maintenance, but not sister chromatid cohesion, during Drosophila female meiosis. PLoS genetics. 2014; 10: e1004540. doi: 10.1371/journal.pgen.1004540
87. Marty F, Rockel-Bauer C, Simigdala N, Brunner E, Basler K. Large-scale imaginal disc sorting: A protocol for “omics”-approaches. Methods. 2014; 68: 260–264. doi: 10.1016/j.ymeth.2014.04.005
88. Teo G, Liu G, Zhang J, Nesvizhskii AI, Gingras A-C, Choi H. SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. J Proteomics. 2014; 100: 37–43. doi: 10.1016/j.jprot.2013.10.023
89. Mellacheruvu D, Wright Z, Couzens AL, Lambert J-P, St-Denis NA, Li T, et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nature methods. 2013; 10: 730–736. doi: 10.1038/nmeth.2557
90. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nature methods. 2012; 9: 676–682. 10.1038/nmeth.2019.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 10
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- RNA-directed DNA Methylation
- Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study
- Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO