Cells with loss-of-heterozygosity after exposure to ionizing radiation in Drosophila are culled by p53-dependent and p53-independent mechanisms
Autoři:
Jeremy Brown aff001; Inle Bush aff001; Justine Bozon aff001; Tin Tin Su aff001
Působiště autorů:
Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
aff001
Vyšlo v časopise:
Cells with loss-of-heterozygosity after exposure to ionizing radiation in Drosophila are culled by p53-dependent and p53-independent mechanisms. PLoS Genet 16(10): e32767. doi:10.1371/journal.pgen.1009056
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009056
Souhrn
Loss of Heterozygosity (LOH) typically refers to a phenomenon in which diploid cells that are heterozygous for a mutant allele lose their wild type allele through mutations. LOH is implicated in oncogenesis when it affects the remaining wild type copy of a tumor suppressor. Drosophila has been a useful model to identify genes that regulate the incidence of LOH, but most of these studies use adult phenotypic markers such as multiple wing hair (mwh). Here, we describe a cell-autonomous fluorescence-based system that relies on the QF/QS transcriptional module to detect LOH, which may be used in larval, pupal and adult stages and in conjunction with the GAL4/UAS system. Using the QF/QS system, we were able to detect the induction of cells with LOH by X-rays in a dose-dependent manner in the larval wing discs, and to monitor their fate through subsequent development in pupa and adult stages. We tested the genetic requirement for changes in LOH, using both classical mutants and GAL4/UAS-mediated RNAi. Our results identify two distinct culling phases that eliminate cells with LOH, one in late larval stages and another in the pupa. The two culling phases are genetically separable, showing differential requirement for pro-apoptotic genes of the H99 locus and transcription factor Srp. A direct comparison of mwh LOH and QF/QS LOH suggests that cells with different LOH events are distinguished from each other in a p53-dependent manner and are retained to different degrees in the final adult structure. These studies reveal previously unknown mechanisms for the elimination of cells with chromosome aberrations.
Klíčová slova:
Apoptosis – Cloning – Drosophila melanogaster – Gene cloning – Heterozygosity – Larvae – Pupae – RNA interference
Zdroje
1. Garcia-Bellido A, Merriam JR. Parameters of the wing imaginal disc development of Drosophila melanogaster. Dev Biol. 1971;24(1):61–87. Epub 1971/01/01. doi: 10.1016/0012-1606(71)90047-9 5001010.
2. Baker BS, Carpenter AT, Ripoll P. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER. Genetics. 1978;90(3):531–78. Epub 1978/11/01. 17248870; PubMed Central PMCID: PMC1213905.
3. Brodsky MH, Sekelsky JJ, Tsang G, Hawley RS, Rubin GM. mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development. Genes Dev. 2000;14(6):666–78. Epub 2000/03/25. 10733527; PubMed Central PMCID: PMC316460.
4. Sogame N, Kim M, Abrams JM. Drosophila p53 preserves genomic stability by regulating cell death. Proc Natl Acad Sci U S A. 2003;100(8):4696–701. Epub 2003/04/04. doi: 10.1073/pnas.0736384100 12672954; PubMed Central PMCID: PMC153618.
5. Siudeja K, Nassari S, Gervais L, Skorski P, Lameiras S, Stolfa D, et al. Frequent Somatic Mutation in Adult Intestinal Stem Cells Drives Neoplasia and Genetic Mosaicism during Aging. Cell Stem Cell. 2015;17(6):663–74. Epub 2015/11/27. doi: 10.1016/j.stem.2015.09.016 26607382; PubMed Central PMCID: PMC5138153.
6. Steller H. Regulation of apoptosis in Drosophila. Cell death and differentiation. 2008;15(7):1132–8. Epub 2008/04/26. doi: 10.1038/cdd.2008.50 18437164.
7. Grether ME, Abrams JM, Agapite J, White K, Steller H. The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev. 1995;9(14):1694–708. Epub 1995/07/15. doi: 10.1101/gad.9.14.1694 7622034.
8. Peterson C, Carney GE, Taylor BJ, White K. reaper is required for neuroblast apoptosis during Drosophila development. Development. 2002;129(6):1467–76. Epub 2002/03/07. 11880355.
9. Wichmann A, Jaklevic B, Su TT. Ionizing radiation induces caspase-dependent but Chk2- and p53-independent cell death in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2006;103(26):9952–7. doi: 10.1073/pnas.0510528103 16785441; PubMed Central PMCID: PMC1502560.
10. McNamee LM, Brodsky MH. p53-independent apoptosis limits DNA damage-induced aneuploidy. Genetics. 2009;182(2):423–35. Epub 2009/04/15. doi: 10.1534/genetics.109.102327 19364807; PubMed Central PMCID: PMC2691752.
11. Wichmann A, Uyetake L, Su TT. E2F1 and E2F2 have opposite effects on radiation-induced p53-independent apoptosis in Drosophila. Dev Biol. 2010;346(1):80–9. Epub 2010/07/28. doi: 10.1016/j.ydbio.2010.07.023 20659447; PubMed Central PMCID: PMC2937093.
12. Riabinina O, Luginbuhl D, Marr E, Liu S, Wu MN, Luo L, et al. Improved and expanded Q-system reagents for genetic manipulations. Nat Methods. 2015;12(3):219–22, 5 p following 22. Epub 2015/01/13. doi: 10.1038/nmeth.3250 25581800; PubMed Central PMCID: PMC4344399.
13. Potter CJ, Tasic B, Russler EV, Liang L, Luo L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell. 2010;141(3):536–48. Epub 2010/05/04. doi: 10.1016/j.cell.2010.02.025 20434990; PubMed Central PMCID: PMC2883883.
14. Jaklevic BR, Su TT. Relative contribution of DNA repair, cell cycle checkpoints, and cell death to survival after DNA damage in Drosophila larvae. Curr Biol. 2004;14(1):23–32. doi: 10.1016/j.cub.2003.12.032 14711410.
15. Bryant PJ. Cell lineage relationships in the imaginal wing disc of Drosophila melanogaster. Dev Biol. 1970;22(3):389–411. Epub 1970/07/01. doi: 10.1016/0012-1606(70)90160-0 5423309.
16. Haynie JL, Bryant PJ. The effects of X-rays on the proliferation dynamics of cells in the imaginal wing disc of Drosophila melanogaster. Wilhelm Roux's archives of developmental biology. 1977;183(2):85–100. doi: 10.1007/BF00848779 28304897
17. James AA, Bryant PJ. A quantitative study of cell death and mitotic inhibition in gamma-irradiated imaginal wing discs of Drosophila melanogaster. Radiat Res. 1981;87(3):552–64. Epub 1981/09/01. 6792652.
18. Kurzhals RL, Titen SW, Xie HB, Golic KG. Chk2 and p53 are haploinsufficient with dependent and independent functions to eliminate cells after telomere loss. PLoS Genet. 2011;7(6):e1002103. Epub 2011/06/10. doi: 10.1371/journal.pgen.1002103 21655087; PubMed Central PMCID: PMC3107200.
19. Wells BS, Johnston LA. Maintenance of imaginal disc plasticity and regenerative potential in Drosophila by p53. Dev Biol. 2012;361(2):263–76. Epub 2011/11/01. doi: 10.1016/j.ydbio.2011.10.012 22036477; PubMed Central PMCID: PMC3296280.
20. Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG, et al. Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol. 2004;24(3):1219–31. Epub 2004/01/20. doi: 10.1128/mcb.24.3.1219-1231.2004 14729967; PubMed Central PMCID: PMC321428.
21. Morata G, Calleja M. Cell competition and tumorigenesis in the imaginal discs of Drosophila. Semin Cancer Biol. 2020;63:19–26. Epub 2019/07/01. doi: 10.1016/j.semcancer.2019.06.010 31255773.
22. Diwanji N, Bergmann A. Two Sides of the Same Coin—Compensatory Proliferation in Regeneration and Cancer. Adv Exp Med Biol. 2019;1167:65–85. Epub 2019/09/15. doi: 10.1007/978-3-030-23629-8_4 31520349.
23. Fogarty CE, Bergmann A. The Sound of Silence: Signaling by Apoptotic Cells. Curr Top Dev Biol. 2015;114:241–65. doi: 10.1016/bs.ctdb.2015.07.013 26431570; PubMed Central PMCID: PMC4752164.
24. Verghese S, Bedi S, Kango-Singh M. Hippo signalling controls Dronc activity to regulate organ size in Drosophila. Cell Death Differ. 2012;19(10):1664–76. Epub 2012/05/05. doi: 10.1038/cdd.2012.48 22555454; PubMed Central PMCID: PMC3438497.
25. Santabarbara-Ruiz P, Lopez-Santillan M, Martinez-Rodriguez I, Binagui-Casas A, Perez L, Milan M, et al. ROS-Induced JNK and p38 Signaling Is Required for Unpaired Cytokine Activation during Drosophila Regeneration. PLoS Genet. 2015;11(10):e1005595. Epub 2015/10/27. doi: 10.1371/journal.pgen.1005595 26496642; PubMed Central PMCID: PMC4619769.
26. Fogarty CE, Diwanji N, Lindblad JL, Tare M, Amcheslavsky A, Makhijani K, et al. Extracellular Reactive Oxygen Species Drive Apoptosis-Induced Proliferation via Drosophila Macrophages. Curr Biol. 2016;26(5):575–84. doi: 10.1016/j.cub.2015.12.064 26898463; PubMed Central PMCID: PMC4765900.
27. Mondal K, VijayRaghavan K, Varadarajan R. Design and utility of temperature-sensitive Gal4 mutants for conditional gene expression in Drosophila. Fly (Austin). 2007;1(5):282–6. Epub 2008/10/07. doi: 10.4161/fly.5251 18836309.
28. Huang Q, Li F, Liu X, Li W, Shi W, Liu FF, et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat Med. 2011;17(7):860–6. Epub 2011/07/05. doi: 10.1038/nm.2385 21725296; PubMed Central PMCID: PMC3132290.
29. Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, et al. Apoptotic cells activate the "phoenix rising" pathway to promote wound healing and tissue regeneration. Sci Signal. 2010;3(110):ra13. Epub 2010/02/25. doi: 10.1126/scisignal.2000634 20179271; PubMed Central PMCID: PMC2905599.
30. Thuma L, Carter D, Weavers H, Martin P. Drosophila immune cells extravasate from vessels to wounds using Tre1 GPCR and Rho signaling. J Cell Biol. 2018;217(9):3045–56. Epub 2018/06/27. doi: 10.1083/jcb.201801013 29941473; PubMed Central PMCID: PMC6122984.
31. Wells BS, Yoshida E, Johnston LA. Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol. 2006;16(16):1606–15. Epub 2006/08/22. doi: 10.1016/j.cub.2006.07.046 16920621; PubMed Central PMCID: PMC1764442.
32. de la Cova C, Senoo-Matsuda N, Ziosi M, Wu DC, Bellosta P, Quinzii CM, et al. Supercompetitor status of Drosophila Myc cells requires p53 as a fitness sensor to reprogram metabolism and promote viability. Cell Metab. 2014;19(3):470–83. Epub 2014/02/25. doi: 10.1016/j.cmet.2014.01.012 24561262; PubMed Central PMCID: PMC3970267.
33. Wylie A, Jones AE, D'Brot A, Lu WJ, Kurtz P, Moran JV, et al. p53 genes function to restrain mobile elements. Genes Dev. 2016;30(1):64–77. Epub 2015/12/25. doi: 10.1101/gad.266098.115 26701264; PubMed Central PMCID: PMC4701979.
34. Kurtz P, Jones AE, Tiwari B, Link N, Wylie A, Tracy C, et al. Drosophila p53 directs nonapoptotic programs in postmitotic tissue. Mol Biol Cell. 2019;30(11):1339–51. Epub 2019/03/21. doi: 10.1091/mbc.E18-12-0791 30892991; PubMed Central PMCID: PMC6724604.
35. Lu Q, Schafer DA, Adler PN. The Drosophila planar polarity gene multiple wing hairs directly regulates the actin cytoskeleton. Development. 2015;142(14):2478–86. Epub 2015/07/15. doi: 10.1242/dev.122119 26153232; PubMed Central PMCID: PMC4510862.
36. Lee G, Sehgal R, Wang Z, Nair S, Kikuno K, Chen CH, et al. Essential role of grim-led programmed cell death for the establishment of corazonin-producing peptidergic nervous system during embryogenesis and metamorphosis in Drosophila melanogaster. Biol Open. 2013;2(3):283–94. Epub 2013/03/23. doi: 10.1242/bio.20133384 23519152; PubMed Central PMCID: PMC3603410.
37. Diaz de la Loza MC, Thompson BJ. Forces shaping the Drosophila wing. Mech Dev. 2017;144(Pt A):23–32. Epub 2016/10/28. doi: 10.1016/j.mod.2016.10.003 27784612.
38. Kiger JA Jr, Natzle JE, Kimbrell DA, Paddy MR, Kleinhesselink K, Green MM. Tissue remodeling during maturation of the Drosophila wing. Dev Biol. 2007;301(1):178–91. Epub 2006/09/12. doi: 10.1016/j.ydbio.2006.08.011 16962574; PubMed Central PMCID: PMC1828914.
39. Charan J, Kantharia ND. How to calculate sample size in animal studies? J Pharmacol Pharmacother. 2013;4(4):303–6. doi: 10.4103/0976-500X.119726 24250214; PubMed Central PMCID: PMC3826013.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 10
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies
- RNA-directed DNA Methylation
- Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study
- Chromosome separation during Drosophila male meiosis I requires separase-mediated cleavage of the homolog conjunction protein UNO