Therapeutic monoclonal antibody treatment protects nonhuman primates from severe Venezuelan equine encephalitis virus disease after aerosol exposure
Autoři:
Crystal W. Burke aff001; Jeffery W. Froude aff001; Franco Rossi aff002; Charles E. White aff003; Crystal L. Moyer aff004; Jane Ennis aff004; M. Louise Pitt aff001; Stephen Streatfield aff005; R. Mark Jones aff005; Konstantin Musiychuk aff005; Jukka Kervinen aff005; Larry Zeitlin aff004; Vidadi Yusibov aff005; Pamela J. Glass aff001
Působiště autorů:
Virology Division, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
aff001; Center of Aerobiological Sciences, US Army Medical Research Institute of Infectious Disease, Fort Detrick, Maryland, United States of America
aff002; Biostatisics Branch, US Army Medical Research Institute of Infectious Disease, Fort Detrick Maryland, United States of America
aff003; Mapp Biopharmaceutical, Inc., San Diego, California, United States of America
aff004; Fraunhofer USA Center for Molecular Biotechnology, Newark, Delaware, United States of America
aff005
Vyšlo v časopise:
Therapeutic monoclonal antibody treatment protects nonhuman primates from severe Venezuelan equine encephalitis virus disease after aerosol exposure. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008157
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008157
Souhrn
There are no FDA licensed vaccines or therapeutics for Venezuelan equine encephalitis virus (VEEV) which causes a debilitating acute febrile illness in humans that can progress to encephalitis. Previous studies demonstrated that murine and macaque monoclonal antibodies (mAbs) provide prophylactic and therapeutic efficacy against VEEV peripheral and aerosol challenge in mice. Additionally, humanized versions of two neutralizing mAbs specific for the E2 glycoprotein, 1A3B-7 and 1A4A-1, administered singly protected mice against aerosolized VEEV. However, no studies have demonstrated protection in nonhuman primate (NHP) models of VEEV infection. Here, we evaluated a chimeric antibody 1A3B-7 (c1A3B-7) containing mouse variable regions on a human IgG framework and a humanized antibody 1A4A-1 containing a serum half-life extension modification (Hu-1A4A-1-YTE) for their post-exposure efficacy in NHPs exposed to aerosolized VEEV. Approximately 24 hours after exposure, NHPs were administered a single bolus intravenous mAb. Control NHPs had typical biomarkers of VEEV infection including measurable viremia, fever, and lymphopenia. In contrast, c1A3B-7 treated NHPs had significant reductions in viremia and lymphopenia and on average approximately 50% reduction in fever. Although not statistically significant, Hu-1A4A-1-YTE administration did result in reductions in viremia and fever duration. Delay of treatment with c1A3B-7 to 48 hours post-exposure still provided NHPs protection from severe VEE disease through reductions in viremia and fever. These results demonstrate that post-exposure administration of c1A3B-7 protected macaques from development of severe VEE disease even when administered 48 hours following aerosol exposure and describe the first evaluations of VEEV-specific mAbs for post-exposure prophylactic use in NHPs. Viral mutations were identified in one NHP after c1A3B-7 treatment administered 24 hrs after virus exposure. This suggests that a cocktail-based therapy, or an alternative mAb against an epitope that cannot mutate without resulting in loss of viral fitness may be necessary for a highly effective therapeutic.
Klíčová slova:
Aerosols – Antibodies – Fevers – Lymphocytes – Macaque – Neutropenia – Viremia – Lymphopenia
Zdroje
1. Medical Aspects of Biological Warfare. Joel Bozue CKC, Pamela J. Glass, editor: The Borden Institute, U.S. Army Medical Department Government Printing Office; 2018 August 1, 2018.
2. Casals J, Buckley SM, Barry DW. Resistance to arbovirus challenge in mice immediately after vaccination. Appl Microbiol. 1973;25(5):755–62. Epub 1973/05/01. 4577178
3. Baker EF Jr., Sasso DR, Maness K, Prichard WD, Parker RL. Venezuelan equine encephalomyelitis vaccine (strain TC-83): a field study. Am J Vet Res. 1978;39(10):1627–31. 717877.
4. Cox HR, Olitsky PK. Active Immunization of Guinea Pigs with the Virus of Equine Encephalomyelitis: Iii. Quantitative Studies of Serum Antiviral Bodies in Animals Immunized with Active and Inactive Virus. J Exp Med. 1936;64(2):217–22. Epub 1936/07/31. doi: 10.1084/jem.64.2.217 19870531
5. Morgan IM. Influence of Age on Susceptibility and on Immune Response of Mice to Eastern Equine Encephalomyelitis Virus. J Exp Med. 1941;74(2):115–32. Epub 1941/07/31. doi: 10.1084/jem.74.2.115 19871121
6. Morgan IM, Schlesinger RW, Olitsky PK. Induced Resistance of the Central Nervous System to Experimental Infection with Equine Encephalomyelitis Virus: I. Neutralizing Antibody in the Central Nervous System in Relation to Cerebral Resistance. J Exp Med. 1942;76(4):357–69. Epub 1942/10/01. doi: 10.1084/jem.76.4.357 19871243
7. Rabinowitz SG, Adler WH. Host defenses during primary Venezuelan equine encephalomyelitis virus infection in mice. I. Passive transfer of protection with immune serum and immune cells. J Immunol. 1973;110(5):1345–53. 4348975.
8. Goodchild SA, O’Brien LM, Steven J, Muller MR, Lanning OJ, Logue CH, et al. A humanised murine monoclonal antibody with broad serogroup specificity protects mice from challenge with Venezuelan equine encephalitis virus. Antiviral research. 2011;90(1):1–8. doi: 10.1016/j.antiviral.2011.01.010 21310183.
9. Hu WG, Phelps AL, Jager S, Chau D, Hu CC, O’Brien LM, et al. A recombinant humanized monoclonal antibody completely protects mice against lethal challenge with Venezuelan equine encephalitis virus. Vaccine. 2010;28(34):5558–64. doi: 10.1016/j.vaccine.2010.06.038 20600509.
10. Hunt AR, Bowen RA, Frederickson S, Maruyama T, Roehrig JT, Blair CD. Treatment of mice with human monoclonal antibody 24h after lethal aerosol challenge with virulent Venezuelan equine encephalitis virus prevents disease but not infection. Virology. 2011;414(2):146–52. Epub 2011/04/15. doi: 10.1016/j.virol.2011.03.016 21489591
11. Hunt AR, Frederickson S, Hinkel C, Bowdish KS, Roehrig JT. A humanized murine monoclonal antibody protects mice either before or after challenge with virulent Venezuelan equine encephalomyelitis virus. J Gen Virol. 2006;87(Pt 9):2467–76. doi: 10.1099/vir.0.81925-0 16894184.
12. Mathews JH, Roehrig JT. Determination of the protective epitopes on the glycoproteins of Venezuelan equine encephalomyelitis virus by passive transfer of monoclonal antibodies. J Immunol. 1982;129(6):2763–7. 6183343.
13. O’Brien LM, Goodchild SA, Phillpotts RJ, Perkins SD. A humanised murine monoclonal antibody protects mice from Venezuelan equine encephalitis virus, Everglades virus and Mucambo virus when administered up to 48 h after airborne challenge. Virology. 2012;426(2):100–5. Epub 2012/02/22. doi: 10.1016/j.virol.2012.01.038 22341308.
14. Phillpotts RJ. Venezuelan equine encephalitis virus complex-specific monoclonal antibody provides broad protection, in murine models, against airborne challenge with viruses from serogroups I, II and III. Virus Res. 2006;120(1–2):107–12. Epub 2006/04/20. doi: 10.1016/j.virusres.2006.02.003 16621103.
15. Rulker T, Voss L, Thullier P, LM OB, Pelat T, Perkins SD, et al. Isolation and characterisation of a human-like antibody fragment (scFv) that inactivates VEEV in vitro and in vivo. PLoS One. 2012;7(5):e37242. doi: 10.1371/journal.pone.0037242 22666347
16. Roehrig JT, Mathews JH. The neutralization site on the E2 glycoprotein of Venezuelan equine encephalomyelitis (TC-83) virus is composed of multiple conformationally stable epitopes. Virology. 1985;142(2):347–56. Epub 1985/04/30. doi: 10.1016/0042-6822(85)90343-5 2414905.
17. Phillpotts RJ, Jones LD, Howard SC. Monoclonal antibody protects mice against infection and disease when given either before or up to 24 h after airborne challenge with virulent Venezuelan equine encephalitis virus. Vaccine. 2002;20(11–12):1497–504. Epub 2002/02/23. doi: 10.1016/s0264-410x(01)00505-9 11858855.
18. Dupuy LC, Richards MJ, Reed DS, Schmaljohn CS. Immunogenicity and protective efficacy of a DNA vaccine against Venezuelan equine encephalitis virus aerosol challenge in nonhuman primates. Vaccine. 2010;28(46):7345–50. Epub 2010/09/21. doi: 10.1016/j.vaccine.2010.09.005 20851089.
19. Reed DS, Glass PJ, Bakken RR, Barth JF, Lind CM, da Silva L, et al. Combined alphavirus replicon particle vaccine induces durable and cross-protective immune responses against equine encephalitis viruses. J Virol. 2014;88(20):12077–86. doi: 10.1128/JVI.01406-14 25122801
20. Casals J, Curnen EC, Thomas L. Venezuelan Equine Encephalomyelitis in Man. J Exp Med. 1943;77(6):521–30. Epub 1943/06/01. doi: 10.1084/jem.77.6.521 19871301
21. Lennette EH, Koprowski H. Human infection with Venezuelan equine encephalomyelitis virus: a report on eight cases of infection acquired in the laboratory. JAMA. 1943;123(17):1088–95.
22. Roehrig JT, Hunt AR, Kinney RM, Mathews JH. In vitro mechanisms of monoclonal antibody neutralization of alphaviruses. Virology. 1988;165(1):66–73. Epub 1988/07/01. doi: 10.1016/0042-6822(88)90659-9 2455383.
23. Dall’Acqua WF, Cook KE, Damschroder MM, Woods RM, Wu H. Modulation of the effector functions of a human IgG1 through engineering of its hinge region. Journal of immunology. 2006;177(2):1129–38. Epub 2006/07/05. doi: 10.4049/jimmunol.177.2.1129 16818770.
24. Dall’Acqua WF, Woods RM, Ward ES, Palaszynski SR, Patel NK, Brewah YA, et al. Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. Journal of immunology. 2002;169(9):5171–80. Epub 2002/10/23. doi: 10.4049/jimmunol.169.9.5171 12391234.
25. Kuo TT, Aveson VG. Neonatal Fc receptor and IgG-based therapeutics. MAbs. 2011;3(5):422–30. Epub 2011/11/04. doi: 10.4161/mabs.3.5.16983 22048693
26. Johnson BJ, Brubaker JR, Roehrig JT, Trent DW. Variants of Venezuelan equine encephalitis virus that resist neutralization define a domain of the E2 glycoprotein. Virology. 1990;177(2):676–83. Epub 1990/08/01. doi: 10.1016/0042-6822(90)90533-w 1695412.
27. Ehrenkranz NJ, Ventura AK. Venezuelan equine encephalitis virus infection in man. Annu Rev Med. 1974;25:9–14. doi: 10.1146/annurev.me.25.020174.000301 4824504.
28. Dietz WH Jr., Peralta PH, Johnson KM. Ten clinical cases of human infection with venezuelan equine encephalomyelitis virus, subtype I-D. Am J Trop Med Hyg. 1979;28(2):329–34. doi: 10.4269/ajtmh.1979.28.329 222156
29. de Pellacani DG, Escalona A.S. Encefalitis Equina Venezolana. Estudio Clinico Y De Laboratorio en Pacientes Pediatricos. Invest Clin. 1973;14:145–58.
30. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. The IMpact-RSV Study Group. Pediatrics. 1998;102(3 Pt 1):531–7. 9738173.
31. Zhu Q, McLellan JS, Kallewaard NL, Ulbrandt ND, Palaszynski S, Zhang J, et al. A highly potent extended half-life antibody as a potential RSV vaccine surrogate for all infants. Science translational medicine. 2017;9(388). doi: 10.1126/scitranslmed.aaj1928 28469033.
32. Ali SO, Takas T, Nyborg A, Shoemaker K, Kallewaard NL, Chiong R, et al. Evaluation of MEDI8852, an Anti-Influenza A Monoclonal Antibody, in Treating Acute Uncomplicated Influenza. Antimicrobial agents and chemotherapy. 2018. doi: 10.1128/AAC.00694-18 30150460.
33. Murin CD, Bruhn JF, Bornholdt ZA, Copps J, Stanfield R, Ward AB. Structural Basis of Pan-Ebolavirus Neutralization by an Antibody Targeting the Glycoprotein Fusion Loop. Cell Rep. 2018;24(10):2723–32 e4. doi: 10.1016/j.celrep.2018.08.009 30184505
34. Diago-Navarro E, Calatayud-Baselga I, Sun D, Khairallah C, Mann I, Ulacia-Hernando A, et al. Antibody-Based Immunotherapy To Treat and Prevent Infection with Hypervirulent Klebsiella pneumoniae. Clin Vaccine Immunol. 2017;24(1). doi: 10.1128/CVI.00456-16 27795303
35. Malkevich NV, Hopkins RJ, Bernton E, Meister GT, Vela EM, Atiee G, et al. Efficacy and safety of AVP-21D9, an anthrax monoclonal antibody, in animal models and humans. Antimicrobial agents and chemotherapy. 2014;58(7):3618–25. doi: 10.1128/AAC.02295-13 24733473
36. Nagy CF, Leach TS, King A, Guttendorf R. Safety, Pharmacokinetics, and Immunogenicity of Obiltoxaximab After Intramuscular Administration to Healthy Humans. Clin Pharmacol Drug Dev. 2018;7(6):652–60. doi: 10.1002/cpdd.410 29125719.
37. Dupuy LC, Richards MJ, Ellefsen B, Chau L, Luxembourg A, Hannaman D, et al. A DNA vaccine for venezuelan equine encephalitis virus delivered by intramuscular electroporation elicits high levels of neutralizing antibodies in multiple animal models and provides protective immunity to mice and nonhuman primates. Clin Vaccine Immunol. 2011;18(5):707–16. doi: 10.1128/CVI.00030-11 21450977
38. Martin SS, Bakken RR, Lind CM, Garcia P, Jenkins E, Glass PJ, et al. Evaluation of formalin inactivated V3526 virus with adjuvant as a next generation vaccine candidate for Venezuelan equine encephalitis virus. Vaccine. 2010;28(18):3143–51. Epub 2010/03/03. doi: 10.1016/j.vaccine.2010.02.056 20193792.
39. Martin SS, Bakken RR, Lind CM, Garcia P, Jenkins E, Glass PJ, et al. Comparison of the immunological responses and efficacy of gamma-irradiated V3526 vaccine formulations against subcutaneous and aerosol challenge with Venezuelan equine encephalitis virus subtype IAB. Vaccine. 2010;28(4):1031–40. Epub 2009/11/17. doi: 10.1016/j.vaccine.2009.10.126 19914193.
40. Burke CW, Froude JW, Miethe S, Hulseweh B, Hust M, Glass PJ. Human-Like Neutralizing Antibodies Protect Mice from Aerosol Exposure with Western Equine Encephalitis Virus. Viruses. 2018;10(4). doi: 10.3390/v10040147 29587363
41. Schmaljohn AL, Johnson ED, Dalrymple JM, Cole GA. Non-neutralizing monoclonal antibodies can prevent lethal alphavirus encephalitis. Nature. 1982;297(5861):70–2. doi: 10.1038/297070a0 6280072.
42. Bale S, Dias JM, Fusco ML, Hashiguchi T, Wong AC, Liu T, et al. Structural basis for differential neutralization of ebolaviruses. Viruses. 2012;4(4):447–70. doi: 10.3390/v4040447 22590681
43. Reed DS, Lind CM, Lackemeyer MG, Sullivan LJ, Pratt WD, Parker MD. Genetically engineered, live, attenuated vaccines protect nonhuman primates against aerosol challenge with a virulent IE strain of Venezuelan equine encephalitis virus. Vaccine. 2005;23(24):3139–47. doi: 10.1016/j.vaccine.2004.12.023 15837213.
44. Thom G, Hatcher J, Hearn A, Paterson J, Rodrigo N, Beljean A, et al. Isolation of blood-brain barrier-crossing antibodies from a phage display library by competitive elution and their ability to penetrate the central nervous system. MAbs. 2018;10(2):304–14. doi: 10.1080/19420862.2017.1409320 29182455
45. Kinney RM, Esposito JJ, Johnson BJ, Roehrig JT, Mathews JH, Barrett AD, et al. Recombinant vaccinia/Venezuelan equine encephalitis (VEE) virus expresses VEE structural proteins. J Gen Virol. 1988;69 (Pt 12):3005–13. doi: 10.1099/0022-1317-69-12-3005 2462013.
46. Kugelman JR, Kugelman-Tonos J, Ladner JT, Pettit J, Keeton CM, Nagle ER, et al. Emergence of Ebola Virus Escape Variants in Infected Nonhuman Primates Treated with the MB-003 Antibody Cocktail. Cell reports. 2015;12(12):2111–20. doi: 10.1016/j.celrep.2015.08.038 26365189.
47. Matsuzaki Y, Sugawara K, Nakauchi M, Takahashi Y, Onodera T, Tsunetsugu-Yokota Y, et al. Epitope mapping of the hemagglutinin molecule of A/(H1N1)pdm09 influenza virus by using monoclonal antibody escape mutants. Journal of virology. 2014;88(21):12364–73. doi: 10.1128/JVI.01381-14 25122788
48. Chem YK, Chua KB, Malik Y, Voon K. Monoclonal antibody-escape variant of dengue virus serotype 1: Genetic composition and envelope protein expression. Trop Biomed. 2015;32(2):344–51. 26691263.
49. Pal P, Fox JM, Hawman DW, Huang YJ, Messaoudi I, Kreklywich C, et al. Chikungunya viruses that escape monoclonal antibody therapy are clinically attenuated, stable, and not purified in mosquitoes. Journal of virology. 2014;88(15):8213–26. doi: 10.1128/JVI.01032-14 24829346
50. Lee CY, Kam YW, Fric J, Malleret B, Koh EG, Prakash C, et al. Chikungunya virus neutralization antigens and direct cell-to-cell transmission are revealed by human antibody-escape mutants. PLoS pathogens. 2011;7(12):e1002390. doi: 10.1371/journal.ppat.1002390 22144891
51. Dupuy LC, Reed DS. Nonhuman primate models of encephalitic alphavirus infection: historical review and future perspectives. Current opinion in virology. 2012;2(3):363–7. doi: 10.1016/j.coviro.2012.02.014 22709522.
52. Randall R, Mills JW. Fatal Encephalitis in Man Due to the Venezuelan Virus of Equine Encephalomyelitis in Trinidad. Science. 1944;99(2568):225–6. Epub 1944/03/17. doi: 10.1126/science.99.2568.225 17844380.
53. Matthews JN, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. BMJ. 1990;300(6719):230–5. doi: 10.1136/bmj.300.6719.230 2106931
54. Hollander M, Wolfe DA, Chicken E. Nonparametric statistical methods. Third edition / ed. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2014. xiii, 819 pages p.
55. Helsel DR. Nondetects and data analysis: statistics for censored environmental data. Hoboken, N.J.: Wiley-Interscience; 2005.
56. Agresti A. An introduction to categorical data analysis. Second Edition ed. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2007.
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 12
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth
- IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis
- The pandemic Escherichia coli sequence type 131 strain is acquired even in the absence of antibiotic exposure
- A role of hypoxia-inducible factor 1 alpha in Mouse Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency