Full-length human cytomegalovirus terminase pUL89 adopts a two-domain structure specific for DNA packaging
Autoři:
Janine Theiß aff001; Min Woo Sung aff002; Andreas Holzenburg aff003; Elke Bogner aff001
Působiště autorů:
Institute of Virology, Charité - Universitätsmedizin Berlin, Berlin, Germany
aff001; Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, United States of America
aff002; Department of Molecular Science, School of Medicine, The University of Texas Rio Grande Valley, Brownsville-Edinburg-Harlingen, Texas, United States of America
aff003
Vyšlo v časopise:
Full-length human cytomegalovirus terminase pUL89 adopts a two-domain structure specific for DNA packaging. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008175
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008175
Souhrn
A key step in replication of human cytomegalovirus (HCMV) in the host cell is the generation and packaging of unit-length genomes into preformed capsids. The enzymes involved in this process are the terminases. The HCMV terminase complex consists of two terminase subunits, the ATPase pUL56 and the nuclease pUL89. A potential third component pUL51 has been proposed. Even though the terminase subunit pUL89 has been shown to be essential for DNA packaging and interaction with pUL56, it is not known how pUL89 mechanistically achieves sequence-specific DNA binding and nicking. To identify essential domains and invariant amino acids vis-a-vis nuclease activity and DNA binding, alanine substitutions of predicted motifs were analyzed. The analyses indicated that aspartate 463 is an invariant amino acid for the nuclease activity, while argine 544 is an invariant aa for DNA binding. Structural analysis of recombinant protein using electron microscopy in conjunction with single particle analysis revealed a curvilinear monomer with two distinct domains connected by a thinner hinge-like region that agrees well with the predicted structure. These results allow us to model how the terminase subunit pUL89’s structure may mediate its function.
Klíčová slova:
Bacteriophages – DNA binding assay – DNA-binding proteins – Human cytomegalovirus – Nucleases – Protein structure – Protein structure prediction – Sequence motif analysis
Zdroje
1. Garber D, Beverly S, Coen D. Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. Virology. 1993; 197: 459–462. doi: 10.1006/viro.1993.1612 8212585
2. Stinski MF. Cytomegalovirus and its replication. In: Fields BN, Knipe D, editors. Fundamental Virology. New York: Raven Press; 1991. pp. 929–950.
3. Britt WJ, Alford CA. Cytomegalovirus. In: Fields BN, Knipe DM, Howley PM, editors. Fields virology, 3rd ed. Philadelphia: Lippincott-Raven Publishers; 1996. pp. 2493–2523.
4. Mocarski ES, Shenk T Jr, Pass RF. Cytomegaloviruses. In: Knipe DM, Howley PM, editors. Fields Virology, 5th ed. Philadelphia: Lippincott Williams and Wilkins; 2007. pp 2701–2771.
5. Rao VB, Feiss M. Mechanisms of DNA packaging by large double-stranded DNA viruses. Annu Rev Virol. 2015; 2(1): 351–378. doi: 10.1146/annurev-virology-100114-055212 26958920
6. Adelman K, Salmon B, Baines JD. Herpes simplex virus DNA packaging sequences adopt novel structures that are specifically recognized by a component of the cleavage and packaging machinery. Proc Natl Acad Sci USA. 2001; 98(6): 3086–3091. doi: 10.1073/pnas.061555698 11248036
7. Catalano CE. The terminase enzyme from bacteriophage lambda: a DNA-packaging machine. Cell Mo. Life Sci. 2000; 57(1): 128–148.
8. Casjens S, Huang WM. Initiation of sequential packaging of bacteriophage P22 DNA. J Mol Biol. 1982; 157(2): 287–298. doi: 10.1016/0022-2836(82)90235-2 6286978
9. Baker ML, Jiang W, Rixon FJ, Chiu W. Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol. 2005; 79: 14967–14970. doi: 10.1128/JVI.79.23.14967-14970.2005 16282496
10. Bogner E. Human cytomegalovirus packaging: an update on structure-function relationships. Future Virology. 2010; 5: 397–404.
11. Borst EM, Kleine-Albers J, Gabaev I, Babic M, Wagner K, Binz A, et al. (2013) The Human cytomegalovirus UL51 Protein is essential for viral genome cleavage-packaging and interacts with the terminase subunits pUL56 and pUL89. J Virol. 2013; 87: 1720–1732. doi: 10.1128/JVI.01955-12 23175377
12. Krosky PM, Underwood MR, Turk SR, Feng KW, Jain RK, Ptak RG, et al. Resistance of human cytomegalovirus to benzimidazole ribonucleosides maps to two open reading frames: UL89 and UL56. J Virol. 1998; 72: 4721–4728. 9573236
13. Neuber S, Wagner K, Goldner T, Lischka P, Steinbrueck L, Messerle M, Borst EM. Mutual Interplay between the Human Cytomegalovirus Terminase Subunits pUL51, pUL56, and pUL89 promotes Terminase Complex Formation. J Virol. 2017; 91: 1–18.
14. Underwood MR, Harvey RJ, Stanat SC, Hemphill ML, Miller T, Drach JC, et al. Inhibition of human cytomegalovirus DNA maturation by a benzimidazole ribonucleoside is mediated through the UL89 gene product. J Virol. 1998; 72: 717–725. 9420278
15. Dunn W, Chou C, Li H, Hai R, Patterson D, Stolc V, et al. Functional profiling of a human cytomegalovirus genome. Proc Natl Acad Sc USA. 2003; 100: 14223–14228.
16. Yu D, Silva MC, Shenk T. Functional map of human cytomegalovirus AD169 defined by global mutational analysis. Proc Natl Acad Sci USA. 2003; 100: 12396–12401. doi: 10.1073/pnas.1635160100 14519856
17. Mocarski ES, Liu AC, Spaete RR. Structure and variability of the a sequence in the genome of human cytomegalovirus (Towne strain). J Gen Virol. 1987; 68 (8): 2223–2230.
18. Tamashiro JC, Spector DH.Terminal structure and heterogeneity in human cytomegalovirus strain AD169. J Virol. 1986; 59(3): 591–604. 3016322
19. Bogner E. Human cytomegalovirus terminase as a target for antiviral chemotherapy. Rev Med Virol. 12(2): 115–127. doi: 10.1002/rmv.344 11921307
20. Bogner E, Radsak K, Stinski MF. The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J Virol. 1998; 72: 2259–2264. 9499084
21. Bogner E, Reschke M, Reis B, Mockenhaupt T, Radsak K. Identification of the gene product encoded by ORF UL56 of the human cytomegalovirus genome. Virology. 1993; 196(1): 290–293. doi: 10.1006/viro.1993.1477 8395117
22. Scheffczik H, Savva CGW, Holzenburg A, Kolesnikova L, Bogner E. The terminase subunits pUL56 and pUL89 of human cytomegalovirus are DNA-metabolizing proteins with toroidal structure. Nucleic Acids Res. 2002; 30: 1695–1703. doi: 10.1093/nar/30.7.1695 11917032
23. Smits C, Chechik M, Kovalevskiy OV, Shevtsov MB, Foster AW, Alonso JC, et al. Structural basis for the nuclease activity of a bacteriophage large terminase. EMBO Rep. 2009; 10(6): 592–598. doi: 10.1038/embor.2009.53 19444313
24. Sun S, Kondabagil K, Drape B, Alam T, Bowman VD, Zhang Z, et al. The structure of the phage T4 DNA packaging motor suggests a mechanism dependent on electrostatic forces. Cell. 2008; 135: 1251–1262. doi: 10.1016/j.cell.2008.11.015 19109896
25. Nadal M, Mas PJ, Blanco AG, Arnan C, Solà M, Har, et al. Structure and inhibition of herpesvirus DNA packaging terminase nuclease domain. Proc Natl Acad Sci USA. 2010; 107(37): 16078–16083. doi: 10.1073/pnas.1007144107 20805464
26. Selvarajan Sigamani S, Zhao H, Kamau YN, Baines JD, Tang L. The structure of the herpes simplex virus DNA-packaging terminase pUL15 nuclease domain suggests an evolutionary lineage among eukaryotic and prokaryotic viruses. J Virol. 2013; 87(12): 7140–7148. doi: 10.1128/JVI.00311-13 23596306
27. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols. 2015; 10(6): 845–858. doi: 10.1038/nprot.2015.053 25950237
28. Townsend LB, Devivar RV, Turk SR, Nassiri MR, Drach JC. Design, synthesis, and antiviral activity of certain 2,5,6-trihalo-1-(ß-D-ribofuranosyl) benzimidazoles. J Med Chem. 1995; 38: 4098–4105. doi: 10.1021/jm00020a025 7562945
29. Yang K, Wills E, Baines JD. A mutation in UL15 of herpes simplex virus 1 that reduces packaging of cleaved genomes. J Virol. 2011; 85(22): 11972–11980. doi: 10.1128/JVI.00857-11 21880766
30. Hwang J-S, Bogner E. ATPase activity of the terminase subunit pUL56 of human cytomegalovirus. J Biol Chem. 2002; 277: 6943–6948. doi: 10.1074/jbc.M108984200 11744697
31. Thoma C, Borst E. Messerle M, Rieger M, Hwang J-S, Bogner E. Identification of the interaction domain of the small terminase subunit pUL89 with the large subunit pUL56 of human cytomegalovirus. Biochemistry. 2006; 45: 8855–8863. doi: 10.1021/bi0600796 16846228
32. Dittmer A, Drach JC, Townsend LB, Fischer A, Bogner E. Interaction of the putative HCMV portal protein pUL104 with the large terminase subunit pUL56 and its inhibition by Benzimidazole-D-ribonucleosides. J Virol. 2005; 79: 14660–14667.
33. Zhao H, Chritensen TE, Kamau YN, Tang L. Structures of the phage Sf6 large terminase provide new insights into DNA translocation and cleavage. Pro Natl Acad Sci USA. 2013; 110: 8075–8080.
34. Xu RG, Jenkins HT, Antson AA, Greive SJ. Structure of the large terminase from a hyperthermophilic virus reveals a unique mechanism for oligomerization and ATP hydrolysis. Nucleic Acids Res. 2017;45(22):13029–13042. doi: 10.1093/nar/gkx947 29069443
35. Rao VB, Mitchell MS. The N-terminal ATPase site in the large terminase protein gp17 is critically required for DNA packaging in bacteriophage T4. J Mol Biol. 2001; 4(3):401–411.
36. Rentas FJ, Rao VB. Defining the bacteriophage T4 DNA packaging machine: evidence for a C-terminal DNA cleavage domain in the large terminase/packaging protein gp17. J Mol Biol. 2003; 34(1):37–52.
37. Hilbert BJ, Hayes JA, Stone NP, Duffy CM, Sankaran B, Kelch BA. Structure and mechanism of the ATPase that powers viral genome packaging. Pro Natl Acad Sci USA.2015; 112(29):E3792–9. doi: 10.1073/pnas.1506951112 26150523
38. Meissner CS, Köppen-Rung P, Dittmer A, Lapp S, Bogner E. A ‘‘coiled-coil” motif is important for oligomerization and DNA binding properties of human cytomegalovirus protein UL77. PLoS ONE. 2011; 6(10): e25115. doi: 10.1371/journal.pone.0025115 21998635
39. Köppen-Rung P, Dittmer A, Bogner E. Intracellular distributions of capsid-associated pUL77 of HCMV and interactions with packaging proteins and pUL93. J Virol. 2016; 90(13): 5876–5885. doi: 10.1128/JVI.00351-16 27053556
40. Borst EM, Bauerfeind R, Binz A, Stephan TM, Neuber S, Wagner K, et al. The Essential Human Cytomegalovirus Proteins pUL77 and pUL93 Are Structural Components Necessary for Viral Genome Encapsidation. J Virol. 2016; 90(13): 5860–5875. doi: 10.1128/JVI.00384-16 27009952
41. Ligat G, Jacquet C, Chou S, Couvreux A, Alain S, Hantz S. Identification of a short sequence in the HCMV terminase pUL56 essential for interaction with pUL89 subunit. Sci Rep. 2017; 7(1): 8796. doi: 10.1038/s41598-017-09469-7 28821882
42. Spaete RR, Mocarsci EE. The a sequence of cytomegalovirus genome function as a cleavage/packaging signal for herpes simplex virus defective genomes. J Virol. 1985; 54(3):817–824. 2987533
43. Banasik M, Sachadyn P. A colorimetric microplate assay for DNA-binding activity of His-tagged MutS protein. Mol Biothechnol. 2016; 58:521–527.
44. Giesen K, Radsak K, Bogner E. The potential terminase subunit pUL56 of HCMV is translocated into the nucleus by its own NLS and interacts with importin a. J Gen Virol. 2000; 81: 2231–2244.
45. Swain M, Ross NW. A silver stain protocol for proteins yielding high resolution and transparent background in sodium dodecyl sulfate-polyacrylamide gels. Electrophoresis. 1995; 16: 948–951. doi: 10.1002/elps.11501601159 7498141
46. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004; 25(13): 1605–1612. doi: 10.1002/jcc.20084 15264254
47. Valentine RC, Shapiro BM, Stadtman ER. Regulation of glutamine synthetase:XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry. 1968; 7: 2143–2152. doi: 10.1021/bi00846a017 4873173
48. Savva CGW, Holzenburg A, Bogner E. Insights into the structure of human cytomegalovirus large terminase subunit pUL56. FEBS Lett. 2004; 563: 135–140. doi: 10.1016/S0014-5793(04)00283-2 15063737
49. Penczek P, Radermacher M, Frank J. Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy. 1992; 40: 33–53. 1580010
50. Harrauz G, Borland L, Bahr GF, Zeitler E, van Heel M. Three-dimensional reconstruction of a human metaphase chromosome from electron micrographs. Chromosoma. 1987; 95(5): 366–374. doi: 10.1007/bf00293184 3652820
51. Saxton WO, Baumeister W. The correlation averaging of a regularly arranged bacterial cell envelope protein. J Microsc. 1982; 127: 127–138. doi: 10.1111/j.1365-2818.1982.tb00405.x 7120365
52. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD and Higgins DG. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011; 7:539. doi: 10.1038/msb.2011.75 21988835
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 12
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Stillova choroba: vzácné a závažné systémové onemocnění
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth
- IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis
- The pandemic Escherichia coli sequence type 131 strain is acquired even in the absence of antibiotic exposure
- A role of hypoxia-inducible factor 1 alpha in Mouse Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency