Novel and emerging sources of Clostridioides difficile infection
Autoři:
Nicholas A. Turner aff001; Becky A. Smith aff001; Sarah S. Lewis aff001
Působiště autorů:
Duke University Medical Center, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, United States of America
aff001; Duke University Medical Center, Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina, United States of America
aff002
Vyšlo v časopise:
Novel and emerging sources of Clostridioides difficile infection. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008125
Kategorie:
Pearls
doi:
https://doi.org/10.1371/journal.ppat.1008125
Zdroje
1. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Dumyati GK, Dunn JR, et al. Burden of Clostridium difficile infection in the United States. N Engl J Med. 2015;372(9):825–34. doi: 10.1056/NEJMoa1408913 25714160
2. Chitnis AS, Holzbauer SM, Belflower RM, Winston LG, Bamberg WM, Lyons C, et al. Epidemiology of community-associated Clostridium difficile infection, 2009 through 2011. JAMA internal medicine. 2013;173(14):1359–67. doi: 10.1001/jamainternmed.2013.7056 23780507
3. Eyre DW, Cule ML, Wilson DJ, Griffiths D, Vaughan A, O'Connor L, et al. Diverse sources of C. difficile infection identified on whole-genome sequencing. The New England journal of medicine. 2013;369(13):1195–205. doi: 10.1056/NEJMoa1216064 24066741
4. Freeman J, Bauer MP, Baines SD, Corver J, Fawley WN, Goorhuis B, et al. The changing epidemiology of Clostridium difficile infections. Clin Microbiol Rev. 2010;23(3):529–49. doi: 10.1128/CMR.00082-09 20610822
5. He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nature genetics. 2013;45(1):109–13. doi: 10.1038/ng.2478 23222960
6. Lanis JM, Barua S, Ballard JD. Variations in TcdB activity and the hypervirulence of emerging strains of Clostridium difficile. PLoS Pathog. 2010;6(8):e1001061. doi: 10.1371/journal.ppat.1001061 20808849
7. Katz KC, Golding GR, Choi KB, Pelude L, Amaratunga KR, Taljaard M, et al. The evolving epidemiology of Clostridium difficile infection in Canadian hospitals during a postepidemic period (2009–2015). Cmaj. 2018;190(25):E758–e65. doi: 10.1503/cmaj.180013 29941432
8. Reveles KR, Pugh MJV, Lawson KA, Mortensen EM, Koeller JM, Argamany JR, et al. Shift to community-onset Clostridium difficile infection in the national Veterans Health Administration, 2003–2014. Am J Infect Control. 2018;46(4):431–5. doi: 10.1016/j.ajic.2017.09.020 29126751
9. Fawley WN, Davies KA, Morris T, Parnell P, Howe R, Wilcox MH. Enhanced surveillance of Clostridium difficile infection occurring outside hospital, England, 2011 to 2013. Euro Surveill. 2016;21(29).
10. Guh AY, Adkins SH, Li Q, Bulens SN, Farley MM, Smith Z, et al. Risk Factors for Community-Associated Clostridium difficile Infection in Adults: A Case-Control Study. Open Forum Infect Dis. 2017;4(4):ofx171. doi: 10.1093/ofid/ofx171 29732377
11. Kutty PK, Woods CW, Sena AC, Benoit SR, Naggie S, Frederick J, et al. Risk factors for and estimated incidence of community-associated Clostridium difficile infection, North Carolina, USA. Emerg Infect Dis. 2010;16(2):197–204. doi: 10.3201/eid1602.090953 20113547
12. Marwick CA, Yu N, Lockhart MC, McGuigan CC, Wiuff C, Davey PG, et al. Community-associated Clostridium difficile infection among older people in Tayside, Scotland, is associated with antibiotic exposure and care home residence: cohort study with nested case-control. J Antimicrob Chemother. 2013;68(12):2927–33. doi: 10.1093/jac/dkt257 23825381
13. Wilcox MH, Mooney L, Bendall R, Settle CD, Fawley WN. A case-control study of community-associated Clostridium difficile infection. J Antimicrob Chemother. 2008;62(2):388–96. doi: 10.1093/jac/dkn163 18434341
14. Naggie S, Miller BA, Zuzak KB, Pence BW, Mayo AJ, Nicholson BP, et al. A case-control study of community-associated Clostridium difficile infection: no role for proton pump inhibitors. Am J Med. 2011;124(3):276.e1–7.
15. Furuya-Kanamori L, Riley TV, Paterson DL, Foster NF, Huber CA, Hong S, et al. Comparison of Clostridium difficile Ribotypes Circulating in Australian Hospitals and Communities. J Clin Microbiol. 2017;55(1):216–25. doi: 10.1128/JCM.01779-16 27807147
16. Thornton CS, Rubin JE, Greninger AL, Peirano G, Chiu CY, Pillai DR. Epidemiological and genomic characterization of community-acquired Clostridium difficile infections. BMC Infect Dis. 2018;18(1):443. doi: 10.1186/s12879-018-3337-9 30170546
17. Crobach MJT, Vernon JJ, Loo VG, Kong LY, Pechine S, Wilcox MH, et al. Understanding Clostridium difficile Colonization. Clin Microbiol Rev. 2018;31(2).
18. Grigoras CA, Zervou FN, Zacharioudakis IM, Siettos CI, Mylonakis E. Isolation of C. difficile Carriers Alone and as Part of a Bundle Approach for the Prevention of Clostridium difficile Infection (CDI): A Mathematical Model Based on Clinical Study Data. PLoS ONE. 2016;11(6):e0156577. doi: 10.1371/journal.pone.0156577 27258068
19. Anderson DJ, Rojas LF, Watson S, Knelson LP, Pruitt S, Lewis SS, et al. Identification of novel risk factors for community-acquired Clostridium difficile infection using spatial statistics and geographic information system analyses. PloS ONE. 2017;12(5):e0176285. doi: 10.1371/journal.pone.0176285 28510584
20. Pepin J, Gonzales M, Valiquette L. Risk of secondary cases of Clostridium difficile infection among household contacts of index cases. J Infect. 2012;64(4):387–90. doi: 10.1016/j.jinf.2011.12.011 22227466
21. Alam MJ, Anu A, Walk ST, Garey KW. Investigation of potentially pathogenic Clostridium difficile contamination in household environs. Anaerobe. 2014;27:31–3. doi: 10.1016/j.anaerobe.2014.03.002 24657158
22. Moradigaravand D, Gouliouris T, Ludden C, Reuter S, Jamrozy D, Blane B, et al. Genomic survey of Clostridium difficile reservoirs in the East of England implicates environmental contamination of wastewater treatment plants by clinical lineages. Microb Genom. 2018.
23. Alam MJ, Walk ST, Endres BT, Basseres E, Khaleduzzaman M, Amadio J, et al. Community Environmental Contamination of Toxigenic Clostridium difficile. Open Forum Infect Dis. 2017;4(1):ofx018. doi: 10.1093/ofid/ofx018 28480289
24. Rodriguez C, Hakimi DE, Vanleyssem R, Taminiau B, Van Broeck J, Delmee M, et al. Clostridium difficile in beef cattle farms, farmers and their environment: Assessing the spread of the bacterium. Vet Microbiol. 2017;210:183–7. doi: 10.1016/j.vetmic.2017.09.010 29103690
25. Collins DA, Selvey LA, Celenza A, Riley TV. Community-associated Clostridium difficile infection in emergency department patients in Western Australia. Anaerobe. 2017;48:121–5. doi: 10.1016/j.anaerobe.2017.08.008 28807622
26. Keessen EC, Harmanus C, Dohmen W, Kuijper EJ, Lipman LJ. Clostridium difficile infection associated with pig farms. Emerg Infect Dis. 2013;19(6):1032–4. doi: 10.3201/eid1906.121645 23735347
27. Knetsch CW, Connor TR, Mutreja A, van Dorp SM, Sanders IM, Browne HP, et al. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill. 2014;19(45):20954.
28. Knight DR, Riley TV. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health. 2019;7:164. doi: 10.3389/fpubh.2019.00164 31281807
29. Collins J, Robinson C, Danhof H, Knetsch CW, van Leeuwen HC, Lawley TD, et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature. 2018;553(7688):291–4. doi: 10.1038/nature25178 29310122
30. Dingle KE, Didelot X, Quan TP, Eyre DW, Stoesser N, Marwick CA, et al. A Role for Tetracycline Selection in Recent Evolution of Agriculture-Associated Clostridium difficile PCR Ribotype 078. MBio. 2019;10(2).
31. Metcalf D, Reid-Smith RJ, Avery BP, Weese JS. Prevalence of Clostridium difficile in retail pork. The Canadian veterinary journal = La revue veterinaire canadienne. 2010;51(8):873–6. 21037888
32. Shaughnessy MK, Snider T, Sepulveda R, Boxrud D, Cebelinski E, Jawahir S, et al. Prevalence and Molecular Characteristics of Clostridium difficile in Retail Meats, Food-Producing and Companion Animals, and Humans in Minnesota. J Food Prot. 2018;81(10):1635–42. doi: 10.4315/0362-028X.JFP-18-104 30198756
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 12
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth
- IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis
- The pandemic Escherichia coli sequence type 131 strain is acquired even in the absence of antibiotic exposure
- A role of hypoxia-inducible factor 1 alpha in Mouse Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency