Childhood immune imprinting to influenza A shapes birth year-specific risk during seasonal H1N1 and H3N2 epidemics
Autoři:
Katelyn M. Gostic aff001; Rebecca Bridge aff002; Shane Brady aff002; Cécile Viboud aff003; Michael Worobey aff004; James O. Lloyd-Smith aff001
Působiště autorů:
Dept. of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
aff001; Arizona Department of Health Services, Phoenix, Arizona, United States of America
aff002; Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
aff003; Dept. of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
aff004
Vyšlo v časopise:
Childhood immune imprinting to influenza A shapes birth year-specific risk during seasonal H1N1 and H3N2 epidemics. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008109
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008109
Souhrn
Across decades of co-circulation in humans, influenza A subtypes H1N1 and H3N2 have caused seasonal epidemics characterized by different age distributions of cases and mortality. H3N2 causes the majority of severe, clinically attended cases in high-risk elderly cohorts, and the majority of overall deaths, whereas H1N1 causes fewer deaths overall, and cases shifted towards young and middle-aged adults. These contrasting age profiles may result from differences in childhood imprinting to H1N1 and H3N2 or from differences in evolutionary rate between subtypes. Here we analyze a large epidemiological surveillance dataset to test whether childhood immune imprinting shapes seasonal influenza epidemiology, and if so, whether it acts primarily via homosubtypic immune memory or via broader, heterosubtypic memory. We also test the impact of evolutionary differences between influenza subtypes on age distributions of cases. Likelihood-based model comparison shows that narrow, within-subtype imprinting shapes seasonal influenza risk alongside age-specific risk factors. The data do not support a strong effect of evolutionary rate, or of broadly protective imprinting that acts across subtypes. Our findings emphasize that childhood exposures can imprint a lifelong immunological bias toward particular influenza subtypes, and that these cohort-specific biases shape epidemic age distributions. As a consequence, newer and less “senior” antibody responses acquired later in life do not provide the same strength of protection as responses imprinted in childhood. Finally, we project that the relatively low mortality burden of H1N1 may increase in the coming decades, as cohorts that lack H1N1-specific imprinting eventually reach old age.
Klíčová slova:
Age distribution – Elderly – Evolutionary rate – Geriatrics – H1N1 – Immunity – Influenza – Swine influenza
Zdroje
1. Francis T. On the Doctrine of Original Antigenic Sin. Proc Am Philos Soc. 1960;104: 572–578.
2. Lessler J, Riley S, Read JM, Wang S, Zhu H, Smith GJD, et al. Evidence for Antigenic Seniority in Influenza A (H3N2) Antibody Responses in Southern China. PLOS Pathog. 2012;8: e1002802. doi: 10.1371/journal.ppat.1002802 22829765
3. Henry C, Palm A-KE, Krammer F, Wilson PC. From Original Antigenic Sin to the Universal Influenza Virus Vaccine. Trends Immunol. 2018;39: 70–79. doi: 10.1016/j.it.2017.08.003 28867526
4. Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE, Wilson IA. Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus. Science. 2010;328: 357–360. doi: 10.1126/science.1186430 20339031
5. Hancock K, Veguilla V, Lu X, Zhong W, Butler EN, Sun H, et al. Cross-Reactive Antibody Responses to the 2009 Pandemic H1N1 Influenza Virus. N Engl J Med Boston. 2009;361: 1945–52. http://dx.doi.org/10.1056/NEJMoa0906453
6. Simonsen L, Spreeuwenberg P, Lustig R, Taylor RJ, Fleming DM, Kroneman M, et al. Global Mortality Estimates for the 2009 Influenza Pandemic from the GLaMOR Project: A Modeling Study. PLOS Med. 2013;10: e1001558. doi: 10.1371/journal.pmed.1001558 24302890
7. Simonsen L, Reichert TA, Miller MA. The virtues of antigenic sin: consequences of pandemic recycling on influenza-associated mortality. Int Congr Ser. 2004;1263: 791–794. doi: 10.1016/j.ics.2004.01.029
8. Ma J, Dushoff J, Earn DJD. Age-specific mortality risk from pandemic influenza. J Theor Biol. 2011;288: 29–34. doi: 10.1016/j.jtbi.2011.08.003 21856313
9. Worobey M, Han G-Z, Rambaut A. Genesis and pathogenesis of the 1918 pandemic H1N1 influenza A virus. Proc Natl Acad Sci. 2014;111: 8107–8112. doi: 10.1073/pnas.1324197111 24778238
10. Gagnon A, Miller MS, Hallman SA, Bourbeau R, Herring DA, Earn DJD, et al. Age-Specific Mortality During the 1918 Influenza Pandemic: Unravelling the Mystery of High Young Adult Mortality. PLoS ONE. 2013;8. doi: 10.1371/journal.pone.0069586 23940526
11. Gostic KM, Ambrose M, Worobey M, Lloyd-Smith JO. Potent protection against H5N1 and H7N9 influenza via childhood hemagglutinin imprinting. Science. 2016;354: 722–726. doi: 10.1126/science.aag1322 27846599
12. Khiabanian H, Farrell GM, George KS, Rabadan R. Differences in Patient Age Distribution between Influenza A Subtypes. PLOS ONE. 2009;4: e6832. doi: 10.1371/journal.pone.0006832 19718262
13. Budd AP, Beacham L, Smith CB, Garten RJ, Reed C, Kniss K, et al. Birth Cohort Effects in Influenza Surveillance Data: Evidence that First Influenza Infection Affects Later Influenza-Associated Illness. J Infect Dis. doi: 10.1093/infdis/jiz201 31053844
14. Lemaitre M, Carrat F. Comparative age distribution of influenza morbidity and mortality during seasonal influenza epidemics and the 2009 H1N1 pandemic. BMC Infect Dis. 2010;10: 162. doi: 10.1186/1471-2334-10-162 20534113
15. Ng S, Nachbagauer R, Balmaseda A, Stadlbauer D, Ojeda S, Patel M, et al. Novel correlates of protection against pandemic H1N1 influenza A virus infection. Nat Med. 2019;25: 962–967. doi: 10.1038/s41591-019-0463-x 31160818
16. Arevalo P, McLean HQ, Belongia EA, Cobey S. Earliest infections predict the age distribution of seasonal influenza A cases. medRxiv. 2019; 19001875. doi: 10.1101/19001875
17. Gostic KM, Bridge R, Brady S, Viboud C, Worobey M, Lloyd-Smith JO. Childhood immune imprinting to influenza A shapes birth year-specific risk during seasonal H1N1 and H3N2 epidemics. medRxiv. 2019; 19001834. doi: 10.1101/19001834
18. Huang QS, Bandaranayake D, Wood T, Newbern EC, Seeds R, Ralston J, et al. Risk Factors and Attack Rates of Seasonal Influenza Infection: Results of the Southern Hemisphere Influenza and Vaccine Effectiveness Research and Surveillance (SHIVERS) Seroepidemiologic Cohort Study. J Infect Dis. 2019;219: 347–357. doi: 10.1093/infdis/jiy443 30016464
19. Cowling BJ, Sullivan SG. The Value of Neuraminidase Inhibition Antibody Titers in Influenza Seroepidemiology. J Infect Dis. 2019;219: 341–343. doi: 10.1093/infdis/jiy446 30011035
20. Memoli MJ, Shaw PA, Han A, Czajkowski L, Reed S, Athota R, et al. Evaluation of Antihemagglutinin and Antineuraminidase Antibodies as Correlates of Protection in an Influenza A/H1N1 Virus Healthy Human Challenge Model. mBio. 2016;7. doi: 10.1128/mBio.00417-16 27094330
21. Wrammert J, Koutsonanos D, Li G-M, Edupuganti S, Sui J, Morrissey M, et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med. 2011;208: 181–193. doi: 10.1084/jem.20101352 21220454
22. Pica N, Hai R, Krammer F, Wang TT, Maamary J, Eggink D, et al. Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proc Natl Acad Sci U S A. 2012;109: 2573–2578. doi: 10.1073/pnas.1200039109 22308500
23. Krammer F. Novel universal influenza virus vaccine approaches. Curr Opin Virol. 2016;17: 95–103. doi: 10.1016/j.coviro.2016.02.002 26927813
24. Andrews SF, Huang Y, Kaur K, Popova LI, Ho IY, Pauli NT, et al. Immune history profoundly affects broadly protective B cell responses to influenza. Sci Transl Med. 2015;7: 316ra192-316ra192. doi: 10.1126/scitranslmed.aad0522 26631631
25. Zost SJ, Wu NC, Hensley SE, Wilson IA. Immunodominance and Antigenic Variation of Influenza Virus Hemagglutinin: Implications for Design of Universal Vaccine Immunogens. J Infect Dis. 2019;219: S38–S45. doi: 10.1093/infdis/jiy696 30535315
26. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, et al. Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science. 2004;303: 327–332. doi: 10.1126/science.1090727 14726583
27. Henry C, Zheng N-Y, Huang M, Cabanov A, Rojas KT, Kaur K, et al. Influenza Virus Vaccination Elicits Poorly Adapted B Cell Responses in Elderly Individuals. Cell Host Microbe. 2019;25: 357–366.e6. doi: 10.1016/j.chom.2019.01.002 30795982
28. Ranjeva S, Subramanian R, Fang VJ, Leung GM, Ip DKM, Perera RAPM, et al. Age-specific differences in the dynamics of protective immunity to influenza. Nat Commun. 2019;10: 1–11. doi: 10.1038/s41467-018-07882-8
29. Miller MS, Gardner TJ, Krammer F, Aguado LC, Tortorella D, Basler CF, et al. Neutralizing Antibodies Against Previously Encountered Influenza Virus Strains Increase over Time: A Longitudinal Analysis. Sci Transl Med. 2013;5: 198ra107-198ra107. doi: 10.1126/scitranslmed.3006637 23946196
30. Tesini BL, Kanagaiah P, Wang J, Hahn M, Halliley JL, Chaves FA, et al. Broad Hemagglutinin-Specific Memory B Cell Expansion by Seasonal Influenza Virus Infection Reflects Early-Life Imprinting and Adaptation to the Infecting Virus. J Virol. 2019;93: e00169–19. doi: 10.1128/JVI.00169-19 30728266
31. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, et al. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA. 2003;289: 179–186. doi: 10.1001/jama.289.2.179 12517228
32. Bedford T, Riley S, Barr IG, Broor S, Chadha M, Cox NJ, et al. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature. 2015;523: 217–220. doi: 10.1038/nature14460 26053121
33. Arizona Department of Health Services. 2015–2016 Influenza Summary. Available: https://www.azdhs.gov/documents/preparedness/epidemiology-disease-control/flu/surveillance/2015-2016-influenza-summary.pdf
34. National Notifiable Diseases Surveillance System, Division of Health Informatics and Surveillance, National Center for Surveillance, Epidemiology and Laboratory Services. MMWR Week Fact Sheet. Available: https://wwwn.cdc.gov/nndss/document/MMWR_Week_overview.pdf
35. Erbelding EJ, Post DJ, Stemmy EJ, Roberts PC, Augustine AD, Ferguson S, et al. A Universal Influenza Vaccine: The Strategic Plan for the National Institute of Allergy and Infectious Diseases. J Infect Dis. 2018;218: 347–354. doi: 10.1093/infdis/jiy103 29506129
36. Bolker BM. Ecological Models and Data in R. Princeton University Press; 2008.
37. Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. New York: Springer-Verlag; 2002.
38. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34: 4121–4123. doi: 10.1093/bioinformatics/bty407 29790939
39. Neher RA, Bedford T, Daniels RS, Russell CA, Shraiman BI. Prediction, dynamics, and visualization of antigenic phenotypes of seasonal influenza viruses. Proc Natl Acad Sci. 2016;113: E1701–E1709. doi: 10.1073/pnas.1525578113 26951657
40. Bedford T, Suchard MA, Lemey P, Dudas G, Gregory V, Hay AJ, et al. Integrating influenza antigenic dynamics with molecular evolution. Losick R, editor. eLife. 2014;3: e01914. doi: 10.7554/eLife.01914 24497547
41. Smith DJ, Lapedes AS, Jong JC de, Bestebroer TM, Rimmelzwaan GF, Osterhaus ADME, et al. Mapping the Antigenic and Genetic Evolution of Influenza Virus. Science. 2004;305: 371–376. doi: 10.1126/science.1097211 15218094
42. Cobey S, Hensley SE. Immune history and influenza virus susceptibility. Curr Opin Virol. 2017;22: 105–111. doi: 10.1016/j.coviro.2016.12.004 28088686
43. Linderman SL, Chambers BS, Zost SJ, Parkhouse K, Li Y, Herrmann C, et al. Potential antigenic explanation for atypical H1N1 infections among middle-aged adults during the 2013–2014 influenza season. Proc Natl Acad Sci. 2014;111: 15798–15803. doi: 10.1073/pnas.1409171111 25331901
44. Chen Y-Q, Wohlbold TJ, Zheng N-Y, Huang M, Huang Y, Neu KE, et al. Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies. Cell. 2018;173: 417–429.e10. doi: 10.1016/j.cell.2018.03.030 29625056
45. Andrews SF, Chambers MJ, Schramm CA, Plyler J, Raab JE, Kanekiyo M, et al. Activation Dynamics and Immunoglobulin Evolution of Pre-existing and Newly Generated Human Memory B cell Responses to Influenza Hemagglutinin. Immunity. 2019;51: 398–410.e5. doi: 10.1016/j.immuni.2019.06.024 31350180
46. Matsuda K, Huang J, Zhou T, Sheng Z, Kang BH, Ishida E, et al. Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Sci Immunol. 2019;4: eaau2710. doi: 10.1126/sciimmunol.aau2710 31004012
47. Ramiscal RR, Vinuesa CG. T-cell subsets in the germinal center. Immunol Rev. 2013;252: 146–155. doi: 10.1111/imr.12031 23405902
48. Rozo M, Gronvall GK. The Reemergent 1977 H1N1 Strain and the Gain-of-Function Debate. mBio. 2015;6: e01013–15. doi: 10.1128/mBio.01013-15 26286690
49. Dushoff J, Plotkin JB, Viboud C, Earn DJD, Simonsen L. Mortality due to Influenza in the United States—An Annualized Regression Approach Using Multiple-Cause Mortality Data. Am J Epidemiol. 2006;163: 181–187. doi: 10.1093/aje/kwj024 16319291
50. Lewnard JA, Cobey S. Immune History and Influenza Vaccine Effectiveness. Vaccines. 2018;6: 28. doi: 10.3390/vaccines6020028 29883414
51. Gagnon A, Acosta E, Miller MS. Reporting and evaluating influenza virus surveillance data: An argument for incidence by single year of age. Vaccine. 2018;36: 6249–6252. doi: 10.1016/j.vaccine.2018.08.077 30219370
52. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16: 626–638. doi: 10.1038/nri.2016.90 27546235
53. vom Steeg LG, Klein SL. Sex and sex steroids impact influenza pathogenesis across the life course. Semin Immunopathol. 2019;41: 189–194. doi: 10.1007/s00281-018-0718-5 30298431
54. Glezen WP, Keitel WA, Taber LH, Piedra PA, Clover RD, Couch RB. Age Distribution of Patients with Medically-Attended Illnesses Caused by Sequential Variants of Influenza A/H1N1: Comparison to Age-Specific Infection Rates, 1978–1989. Am J Epidemiol. 1991;133: 296–304. doi: 10.1093/oxfordjournals.aje.a115874 2000847
55. US Census Bureau. Index of program surveys, population estimates. [cited 21 Aug 2019]. Available: https://www2.census.gov/programs-surveys/popest/
56. Sagulenko P, Puller V, Neher RA. TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evol. 2018;4. doi: 10.1093/ve/vex042 29340210
57. Bogner P, Capua I, Lipman DJ, Cox NJ. A global initiative on sharing avian flu data. Nature. 2006;442: 981. doi: 10.1038/442981a
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 12
- Stillova choroba: vzácné a závažné systémové onemocnění
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth
- IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis
- The pandemic Escherichia coli sequence type 131 strain is acquired even in the absence of antibiotic exposure
- A role of hypoxia-inducible factor 1 alpha in Mouse Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency