Human immunity to Toxoplasma gondii
Autoři:
Daniel Fisch aff001; Barbara Clough aff001; Eva-Maria Frickel aff001
Působiště autorů:
Host- Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
aff001
Vyšlo v časopise:
Human immunity to Toxoplasma gondii. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008097
Kategorie:
Pearls
doi:
https://doi.org/10.1371/journal.ppat.1008097
Zdroje
1. Pappas G, Roussos N, Falagas ME. Toxoplasmosis snapshots: Global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. Int J Parasitol. 2009 Oct 1;39[12]:1385–94. doi: 10.1016/j.ijpara.2009.04.003 19433092
2. Xiao J, Yolken RH. Strain hypothesis of Toxoplasma gondii infection on the outcome of human diseases. Acta Physiol. 2015 Apr;213[4]:828–45.
3. Hill D, Dubey JP. Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect. 2002 Oct 1;8[10]:634–40. doi: 10.1046/j.1469-0691.2002.00485.x 12390281
4. Harker KS, Ueno N, Lodoen MB. Toxoplasma gondii dissemination: a parasite’s journey through the infected host. Parasite Immunol. 2015 Mar 1;37[3]:141–9. doi: 10.1111/pim.12163 25408224
5. Gazzinelli RT, Mendonça-Neto R, Lilue J, Howard J, Sher A. Innate resistance against Toxoplasma gondii: An evolutionary tale of mice, cats, and men. Cell Host Microbe. 2014 Feb 12;15[2]:132–8. doi: 10.1016/j.chom.2014.01.004 24528860
6. Haldar AK, Foltz C, Finethy R, Piro AS, Feeley EM, Pilla-Moffett DM, et al. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proc Natl Acad Sci. 2015;112[41]:E5628–37. doi: 10.1073/pnas.1515966112 26417105
7. Bliss SK, Marshall AJ, Zhang Y, Denkers EY. Human Polymorphonuclear Leukocytes Produce IL-12, TNF-α, and the chemokines macrophage-inflammatory protein-1α and -1β in response to Toxoplasma gondii antigens. J Immunol. 1999 Jun 15;162[12]:7369–7375. 10358188
8. Aldebert D, Durand F, Mercier C, Brenier-Pinchart M-P, Cesbron-Delauw M-F, Pelloux H. Toxoplasma gondii triggers secretion of interleukin-12 but low level of interleukin-10 from the THP-1 human monocytic cell line. Cytokine. 2007;37[3]:206–11. doi: 10.1016/j.cyto.2007.03.012 17512211
9. Tosh KW, Mittereder L, Bonne-Annee S, Hieny S, Nutman TB, Singer SM, et al. The IL-12 response of primary human dendritic cells and monocytes to Toxoplasma gondii is stimulated by phagocytosis of live parasites rather than host cell invasion. J Immunol. 2016 Jan 1;196[1]:345–56. doi: 10.4049/jimmunol.1501558 26597011
10. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science. 2005 Jun 10;308[5728]:1626–1629. doi: 10.1126/science.1109893 15860593
11. Koblansky AA, Jankovic D, Oh H, Hieny S, Sungnak W, Mathur R, et al. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity. 2013 Jan 24;38[1]:119–30. doi: 10.1016/j.immuni.2012.09.016 23246311
12. Safronova A, Araujo A, Camanzo ET, Moon TJ, Elliott MR, Beiting DP, et al. Alarmin S100A11 initiates a chemokine response to the human pathogen Toxoplasma gondii. Nat Immunol. 2019 Jan;20[1]:64–72. doi: 10.1038/s41590-018-0250-8 30455460
13. Witola WH, Mui E, Hargrave A, Liu S, Hypolite M, Montpetit A, et al. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells. Infect Immun. 2011 Feb;79[2]:756–66. doi: 10.1128/IAI.00898-10 21098108
14. Gov L, Schneider CA, Lima TS, Pandori W, Lodoen MB. NLRP3 and potassium efflux drive rapid IL-1β release from primary human monocytes during Toxoplasma gondii infection. J Immunol. 2017;199[8]:2855–64. doi: 10.4049/jimmunol.1700245 28904126
15. Lima TS, Gov L, Lodoen MB. Evasion of human neutrophil-mediated host defense during Toxoplasma gondii infection. MBio. 2018 Feb 13;9[1]:e02027–17. doi: 10.1128/mBio.02027-17 29440572
16. Suzuki Y, Orellana MA, Schreiber RD, Remington JS. Interferon-gamma: the major mediator of resistance against Toxoplasma gondii. Science. 1988 Apr 22;240[4851]:516–518. doi: 10.1126/science.3128869 3128869
17. Däubener W, Mackenzie C, Hadding U. Establishment of T-helper type 1- and T-helper type 2-like human Toxoplasma antigen-specific T-cell clones. Immunology. 1995 Sep;86[1]:79–84. 7590886
18. Saeij JP, Frickel E-M. Exposing Toxoplasma gondii hiding inside the vacuole: a role for GBPs, autophagy and host cell death. Curr Opin Microbiol. 2017;40:72–80. doi: 10.1016/j.mib.2017.10.021 29141239
19. Saeij JPJ, Boyle JP, Boothroyd JC. Differences among the three major strains of Toxoplasma gondii and their specific interactions with the infected host. Trends Parasitol. 2005 Oct 1;21[10]:476–81. doi: 10.1016/j.pt.2005.08.001 16098810
20. Chao CC, Gekker G, Hu S, Peterson PK. Human microglial cell defense against Toxoplasma gondii. The role of cytokines. J Immunol. 1994 Feb 1;152[3]:1246–1252. 8301129
21. Janssen R, van Wengen A, Verhard E, de Boer T, Zomerdijk T, Ottenhoff THM, et al. Divergent role for TNF-α in IFN-γ-induced killing of Toxoplasma gondii and Salmonella typhimurium contributes to selective susceptibility of patients with partial IFN-γ receptor 1 deficiency. J Immunol. 2002 Oct 1;169[7]:3900–3907. doi: 10.4049/jimmunol.169.7.3900 12244188
22. Andrade RM, Wessendarp M, Gubbels M-J, Striepen B, Subauste CS. CD40 induces macrophage anti–Toxoplasma gondii activity by triggering autophagy-dependent fusion of pathogen-containing vacuoles and lysosomes. J Clin Invest. 2006 Sep 1;116[9]:2366–77. doi: 10.1172/JCI28796 16955139
23. Muniz-Feliciano L, Van Grol J, Portillo J-AC, Liew L, Liu B, Carlin CR, et al. Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite. PLoS Pathog. 2013 Dec 19;9[12]:e1003809–e1003809. doi: 10.1371/journal.ppat.1003809 24367261
24. Fisch D, Yakimovich A, Clough B, Wright J, Bunyan M, Howell M, et al. Defining host–pathogen interactions employing an artificial intelligence workflow. Elife. 2019 Feb 12;8 e40560. doi: 10.7554/eLife.40560 30744806
25. Selleck EM, Orchard RC, Lassen KG, Beatty WL, Xavier RJ, Levine B, et al. A noncanonical autophagy pathway restricts Toxoplasma gondii growth in a strain-specific manner in IFN-γ-activated human cells. MBio. 2015 Sep 8;6[5]:e01157–15. doi: 10.1128/mBio.01157-15 26350966
26. Clough B, Wright JD, Pereira PM, Hirst EM, Johnston AC, Henriques R, et al. K63-linked ubiquitination targets Toxoplasma gondii for endo-lysosomal destruction in IFNγ-stimulated human cells. PLoS Pathog. 2016;12[11]:e1006027. doi: 10.1371/journal.ppat.1006027 27875583
27. Fisch D, Bando H, Clough B, Hornung V, Yamamoto M, Shenoy AR, et al. Human GBP1 is a microbe‐specific gatekeeper of macrophage apoptosis and pyroptosis. EMBO J. 2019 May 31;e100926. doi: 10.15252/embj.2018100926 31268602
28. Besteiro S. Toxoplasma control of host apoptosis: the art of not biting too hard the hand that feeds you. Microb cell. 2015 May 30;2[6]:178–81. doi: 10.15698/mic2015.06.209 28362004
29. Qin A, Lai D-H, Liu Q, Huang W, Wu Y-P, Chen X, et al. Guanylate-binding protein 1 [GBP1] contributes to the immunity of human mesenchymal stromal cells against Toxoplasma gondii. Proc Natl Acad Sci. 2017 114[6]:1365–1370. doi: 10.1073/pnas.1619665114 28123064
30. Johnston AC, Piro A, Clough B, Siew M, Virreira Winter S, Coers J, et al. Human GBP1 does not localize to pathogen vacuoles but restricts Toxoplasma gondii. Cell Microbiol. 2016 Aug;18[8]:1056–64. doi: 10.1111/cmi.12579 26874079
31. Niedelman W, Sprokholt JK, Clough B, Frickel E-M, Saeij JPJ. Cell death of gamma interferon-stimulated human fibroblasts upon Toxoplasma gondii infection induces early parasite egress and limits parasite replication. Infect Immun. 2013 Dec;81[12]:4341–9. doi: 10.1128/IAI.00416-13 24042117
32. Pfefferkorn ER. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci. 1984 Feb;81[3]:908–12. doi: 10.1073/pnas.81.3.908 6422465
33. Bando H, Sakaguchi N, Lee Y, Pradipta A, Ma JS, Tanaka S, et al. Toxoplasma effector TgIST targets host IDO1 to antagonize the IFN-γ-induced anti-parasitic response in human cells. Vol. 9, Frontiers in Immunology. 2018. p. 2073. doi: 10.3389/fimmu.2018.02073 30283439
34. Woodman JP, Dimier IH, Bout DT. Human endothelial cells are activated by IFN-gamma to inhibit Toxoplasma gondii replication. Inhibition is due to a different mechanism from that existing in mouse macrophages and human fibroblasts. J Immunol. 1991 Sep 15;147[6]:2019–2023. 1909738
35. Olias P, Etheridge RD, Zhang Y, Holtzman MJ, Sibley LD. Toxoplasma effector recruits the Mi-2/NuRD complex to repress STAT1 transcription and block IFN- γ -dependent gene expression. Cell Host Microbe. 2016;20[1]:72–82. doi: 10.1016/j.chom.2016.06.006 27414498
36. Gay G, Braun L, Brenier-Pinchart M-P, Vollaire J, Josserand V, Bertini R-L, et al. Toxoplasma gondii TgIST co-opts host chromatin repressors dampening STAT1-dependent gene regulation and IFN-γ-mediated host defenses. J Exp Med. 2016;213[9]:1779–98. doi: 10.1084/jem.20160340 27503074
37. Dzierszinski F, Nishi M, Ouko L, Roos DS. Dynamics of Toxoplasma gondii differentiation. Eukaryot Cell. 2004 Aug 1;3[4]:992–1003. doi: 10.1128/EC.3.4.992-1003.2004 15302832
38. Spear W, Chan D, Coppens I, Johnson RS, Giaccia A, Blader IJ. The host cell transcription factor hypoxia-inducible factor 1 is required for Toxoplasma gondii growth and survival at physiological oxygen levels. Cell Microbiol. 2006 Feb 1;8[2]:339–52. doi: 10.1111/j.1462-5822.2005.00628.x 16441443
39. Nagineni CN, Detrick B, Hooks JJ. Toxoplasma gondii infection induces gene expression and secretion of interleukin 1 [IL-1], IL-6, granulocyte-macrophage colony-stimulating factor, and intercellular adhesion molecule 1 by human retinal pigment epithelial cells. Infect Immun. 2000 Jan;68[1]:407–10. doi: 10.1128/iai.68.1.407-410.2000 10603418
40. Streilein JW, Wilbanks GA, Cousins SW. Immunoregulatory mechanisms of the eye. J Neuroimmunol. 1992 Aug 1;39[3]:185–200. doi: 10.1016/0165-5728(92)90253-h 1644895
41. Nagineni CN, Detrick B, Hooks JJ. Transforming growth factor-beta expression in human retinal pigment epithelial cells is enhanced by Toxoplasma gondii: a possible role in the immunopathogenesis of retinochoroiditis. Clin Exp Immunol. 2002 May;128[2]:372–8. doi: 10.1046/j.1365-2249.2002.01815.x 11985530
42. Nagineni CN, Pardhasaradhi K, Martins MC, Detrick B, Hooks JJ. Mechanisms of interferon-induced inhibition of Toxoplasma gondii replication in human retinal pigment epithelial cells. Infect Immun. 1996 Oct;64[10]:4188–96. 8926087
43. de-la-Torre A, Sauer A, Pfaff AW, Bourcier T, Brunet J, Speeg-Schatz C, et al. Severe South American ocular Toxoplasmosis is associated with decreased IFN-γ/IL-17 α and increased Il-6/Il-13 intraocular levels. PLoS Negl Trop Dis. 2013 Nov 21;7[11]:e2541. doi: 10.1371/journal.pntd.0002541 24278490
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 12
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth
- IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis
- The pandemic Escherichia coli sequence type 131 strain is acquired even in the absence of antibiotic exposure
- A role of hypoxia-inducible factor 1 alpha in Mouse Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency