Identification of viral SIM-SUMO2-interaction inhibitors for treating primary effusion lymphoma
Autoři:
Ling Ding aff001; Qing Zhu aff001; Feng Zhou aff003; Hongsheng Tan aff004; Wenjia Xu aff005; Chengling Pan aff006; Caixia Zhu aff001; Yuyan Wang aff001; Hong Zhang aff004; Wenwei Fu aff004; Zhikang Qian aff005; Zhenghong Yuan aff001; Hongxi Xu aff004; Fang Wei aff002; Qiliang Cai aff001
Působiště autorů:
MOE& NHC&CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, P. R. China
aff001; ShengYushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
aff002; Baoji Affiliated Hospital of Xi’an Medical University, Baoji & MOE Key Laboratory of Western Resources and Modern Biotechnology, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
aff003; School of Pharmacy, Shanghai University of Traditional Chinese Medicine & Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
aff004; Unit of Herpesvirus and Molecular Virology, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, P. R. China
aff005; Beijing Computing Center, Beijing Academy of Science and Technology & Beijing Beike Deyuan Bio-Pharm Technology Company, Beijing, P. R. China
aff006; Expert Workstation, Baoji Central Hospital, Baoji, P. R. China
aff007
Vyšlo v časopise:
Identification of viral SIM-SUMO2-interaction inhibitors for treating primary effusion lymphoma. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008174
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008174
Souhrn
Primary effusion lymphoma (PEL) is an aggressive B-cell malignancy without effective treatment, and caused by the infection of Kaposi’s sarcoma-associated herpesvirus (KSHV), predominantly in its latent form. Previously we showed that the SUMO2-interacting motif within the viral latency-associated nuclear antigen (LANASIM) is essential for establishment and maintenance of KSHV latency. Here, we developed a luciferase based live-cell reporter system to screen inhibitors selectively targeting the interaction between LANASIM and SUMO2. Cambogin, a bioactive natural product isolated from the Garcinia genus (a traditional herbal medicine used for cancer treatment), was obtained from the reporter system screening to efficiently inhibit the association of SUMO2 with LANASIM, in turn reducing the viral episome DNA copy number for establishment and maintenance of KSHV latent infection at a low concentration (nM). Importantly, Cambogin treatments not only specifically inhibited proliferation of KSHV-latently infected cells in vitro, but also induced regression of PEL tumors in a xenograft mouse model. This study has identified Cambogin as a novel therapeutic agent for treating PEL as well as eliminating persistent infection of oncogenic herpesvirus.
Klíčová slova:
Cancer treatment – Cytotoxicity – Immunoblotting – Immunoprecipitation – Kaposi's sarcoma-associated herpesvirus – Mouse models – Polymerase chain reaction – Virions
Zdroje
1. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, et al. (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266: 1865–1869. doi: 10.1126/science.7997879 7997879
2. Ye F, Lei X, Gao SJ (2011) Mechanisms of Kaposi's Sarcoma-Associated Herpesvirus Latency and Reactivation. Adv Virol 2011.
3. Cesarman E (2011) Gammaherpesvirus and lymphoproliferative disorders in immunocompromised patients. Cancer Lett 305: 163–174. doi: 10.1016/j.canlet.2011.03.003 21493001
4. Boulanger E, Daniel MT, Agbalika F, Oksenhendler E (2003) Combined chemotherapy including high-dose methotrexate in KSHV/HHV8-associated primary effusion lymphoma. Am J Hematol 73: 143–148. doi: 10.1002/ajh.10341 12827649
5. Simonelli C, Spina M, Cinelli R, Talamini R, Tedeschi R, et al. (2003) Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. J Clin Oncol 21: 3948–3954. doi: 10.1200/JCO.2003.06.013 14581418
6. Boulanger E, Gerard L, Gabarre J, Molina JM, Rapp C, et al. (2005) Prognostic factors and outcome of human herpesvirus 8-associated primary effusion lymphoma in patients with AIDS. J Clin Oncol 23: 4372–4380. doi: 10.1200/JCO.2005.07.084 15994147
7. Boshoff C, Chang Y (2001) Kaposi's sarcoma-associated herpesvirus: a new DNA tumor virus. Annu Rev Med 52: 453–470. doi: 10.1146/annurev.med.52.1.453 11160789
8. Moore PS, Chang Y (2011) KSHV: forgotten but not gone. Blood 117: 6973–6974. doi: 10.1182/blood-2011-05-350306 21719604
9. Gruffaz M, Zhou S, Vasan K, Rushing T, Michael QL, et al. (2018) Repurposing Cytarabine for Treating Primary Effusion Lymphoma by Targeting Kaposi's Sarcoma-Associated Herpesvirus Latent and Lytic Replications. MBio 9.
10. Feng WH, Hong G, Delecluse HJ, Kenney SC (2004) Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J Virol 78: 1893–1902. doi: 10.1128/JVI.78.4.1893-1902.2004 14747554
11. Brown HJ, McBride WH, Zack JA, Sun R (2005) Prostratin and bortezomib are novel inducers of latent Kaposi's sarcoma-associated herpesvirus. Antivir Ther 10: 745–751. 16218174
12. Klass CM, Krug LT, Pozharskaya VP, Offermann MK (2005) The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood 105: 4028–4034. doi: 10.1182/blood-2004-09-3569 15687238
13. Kang H, Song J, Choi K, Kim H, Choi M, et al. (2014) Efficient lytic induction of Kaposi's sarcoma-associated herpesvirus (KSHV) by the anthracyclines. Oncotarget 5: 8515–8527. doi: 10.18632/oncotarget.2335 25237786
14. Granato M, Romeo MA, Tiano MS, Santarelli R, Gonnella R, et al. (2017) Bortezomib promotes KHSV and EBV lytic cycle by activating JNK and autophagy. Sci Rep 7: 13052. doi: 10.1038/s41598-017-13533-7 29026157
15. Chen J, Jiang L, Lan K, Chen X (2015) Celecoxib Inhibits the Lytic Activation of Kaposi's Sarcoma-Associated Herpesvirus through Down-Regulation of RTA Expression by Inhibiting the Activation of p38 MAPK. Viruses 7: 2268–2287. doi: 10.3390/v7052268 25951487
16. Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, et al. (2004) Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 36: 687–693. doi: 10.1038/ng1384 15220918
17. Parravicini C, Chandran B, Corbellino M, Berti E, Paulli M, et al. (2000) Differential viral protein expression in Kaposi's sarcoma-associated herpesvirus-infected diseases: Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Am J Pathol 156: 743–749. doi: 10.1016/S0002-9440(10)64940-1 10702388
18. Uppal T, Banerjee S, Sun Z, Verma SC, Robertson ES (2014) KSHV LANA—the master regulator of KSHV latency. Viruses 6: 4961–4998. doi: 10.3390/v6124961 25514370
19. Paudel N, Sadagopan S, Chakraborty S, Sarek G, Ojala PM, et al. (2012) Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen interacts with multifunctional angiogenin to utilize its antiapoptotic functions. J Virol 86: 5974–5991. doi: 10.1128/JVI.00070-12 22438557
20. Cai QL, Knight JS, Verma SC, Zald P, Robertson ES (2006) EC5S ubiquitin complex is recruited by KSHV latent antigen LANA for degradation of the VHL and p53 tumor suppressors. PLoS Pathog 2: e116. doi: 10.1371/journal.ppat.0020116 17069461
21. Cai Q, Verma SC, Lu J, Robertson ES (2010) Molecular biology of Kaposi's sarcoma-associated herpesvirus and related oncogenesis. Adv Virus Res 78: 87–142. doi: 10.1016/B978-0-12-385032-4.00003-3 21040832
22. Verma SC, Lan K, Robertson E (2007) Structure and function of latency-associated nuclear antigen. Curr Top Microbiol Immunol 312: 101–136. doi: 10.1007/978-3-540-34344-8_4 17089795
23. Cai Q, Cai S, Zhu C, Verma SC, Choi JY, et al. (2013) A unique SUMO-2-interacting motif within LANA is essential for KSHV latency. PLoS Pathog 9: e1003750. doi: 10.1371/journal.ppat.1003750 24278015
24. Shen K, Lu F, Xie J, Wu M, Cai B, et al. (2016) Cambogin exerts anti-proliferative and pro-apoptotic effects on breast adenocarcinoma through the induction of NADPH oxidase 1 and the alteration of mitochondrial morphology and dynamics. Oncotarget 7: 50596–50611. doi: 10.18632/oncotarget.10585 27418140
25. Tian Z, Shen J, Wang F, Xiao P, Yang J, et al. (2011) Cambogin is preferentially cytotoxic to cells expressing PDGFR. PLoS One 6: e21370. doi: 10.1371/journal.pone.0021370 21712951
26. Okada S, Goto H, Yotsumoto M (2014) Current status of treatment for primary effusion lymphoma. Intractable Rare Dis Res 3: 65–74. doi: 10.5582/irdr.2014.01010 25364646
27. Granato M, Rizzello C, Gilardini Montani MS, Cuomo L, Vitillo M, et al. (2017) Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem 41: 124–136. doi: 10.1016/j.jnutbio.2016.12.011 28092744
28. Granato M, Gilardini Montani MS, Santarelli R, D'Orazi G, Faggioni A, et al. (2017) Apigenin, by activating p53 and inhibiting STAT3, modulates the balance between pro-apoptotic and pro-survival pathways to induce PEL cell death. J Exp Clin Cancer Res 36: 167. doi: 10.1186/s13046-017-0632-z 29179721
29. Tsai CY, Chen CY, Chiou YH, Shyu HW, Lin KH, et al. (2017) Epigallocatechin-3-Gallate Suppresses Human Herpesvirus 8 Replication and Induces ROS Leading to Apoptosis and Autophagy in Primary Effusion Lymphoma Cells. Int J Mol Sci 19.
30. Long C, Guo W, Zhou H, Wang J, Wang H, et al. (2016) Triptolide decreases expression of latency-associated nuclear antigen 1 and reduces viral titers in Kaposi's sarcoma-associated and herpesvirus-related primary effusion lymphoma cells. Int J Oncol 48: 1519–1530. doi: 10.3892/ijo.2016.3353 26821279
31. Ingber D, Fujita T, Kishimoto S, Sudo K, Kanamaru T, et al. (1990) Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348: 555–557. doi: 10.1038/348555a0 1701033
32. Kanno T, Uehara T, Osawa M, Fukumoto H, Mine S, et al. (2015) Fumagillin, a potent angiogenesis inhibitor, induces Kaposi sarcoma-associated herpesvirus replication in primary effusion lymphoma cells. Biochem Biophys Res Commun 463: 1267–1272. doi: 10.1016/j.bbrc.2015.06.100 26093300
33. Shen K, Xie J, Wang H, Zhang H, Yu M, et al. (2015) Cambogin Induces Caspase-Independent Apoptosis through the ROS/JNK Pathway and Epigenetic Regulation in Breast Cancer Cells. Mol Cancer Ther 14: 1738–1749. doi: 10.1158/1535-7163.MCT-14-1048 25976678
34. Ye F, Lattif AA, Xie J, Weinberg A, Gao S (2012) Nutlin-3 induces apoptosis, disrupts viral latency and inhibits expression of angiopoietin-2 in Kaposi sarcoma tumor cells. Cell Cycle 11: 1393–1399. doi: 10.4161/cc.19756 22421142
35. Cai Q, Lan K, Verma SC, Si H, Lin D, et al. (2006) Kaposi's sarcoma-associated herpesvirus latent protein LANA interacts with HIF-1 alpha to upregulate RTA expression during hypoxia: Latency control under low oxygen conditions. J Virol 80: 7965–7975. doi: 10.1128/JVI.00689-06 16873253
36. Mo X, Wei F, Tong Y, Ding L, Zhu Q, et al. (2018) Lactic Acid Downregulates Viral MicroRNA To Promote Epstein-Barr Virus-Immortalized B Lymphoblastic Cell Adhesion and Growth. J Virol 92.
37. Qian Z, Xuan B, Hong TT, Yu D (2008) The full-length protein encoded by human cytomegalovirus gene UL117 is required for the proper maturation of viral replication compartments. J Virol 82: 3452–3465. doi: 10.1128/JVI.01964-07 18216115
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 12
- Stillova choroba: vzácné a závažné systémové onemocnění
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth
- IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis
- The pandemic Escherichia coli sequence type 131 strain is acquired even in the absence of antibiotic exposure
- A role of hypoxia-inducible factor 1 alpha in Mouse Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency