Structural evidence for the critical role of the prion protein hydrophobic region in forming an infectious prion
Autoři:
Romany Abskharon aff001; Fei Wang aff003; Alexandre Wohlkonig aff001; Juxin Ruan aff003; Sameh Soror aff001; Gabriele Giachin aff006; Els Pardon aff001; Wenquan Zou aff007; Giuseppe Legname aff008; Jiyan Ma aff003; Jan Steyaert aff001
Působiště autorů:
Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
aff001; VIB-VUB Center for Structural Biology, Vlaams Instituut Biotechnologie (VIB), Brussels, Belgium
aff002; Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, United States of America
aff003; National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
aff004; Center of Excellence, Helwan Structural Biology Research, Faculty of Pharmacy, Helwan University, Cairo, Egypt
aff005; Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
aff006; Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
aff007; Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
aff008
Vyšlo v časopise:
Structural evidence for the critical role of the prion protein hydrophobic region in forming an infectious prion. PLoS Pathog 15(12): e32767. doi:10.1371/journal.ppat.1008139
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008139
Souhrn
Prion or PrPSc is the proteinaceous infectious agent causing prion diseases in various mammalian species. Despite decades of research, the structural basis for PrPSc formation and prion infectivity remains elusive. To understand the role of the hydrophobic region in forming infectious prion at the molecular level, we report X-ray crystal structures of mouse (Mo) prion protein (PrP) (residues 89–230) in complex with a nanobody (Nb484). Using the recombinant prion propagation system, we show that the binding of Nb484 to the hydrophobic region of MoPrP efficiently inhibits the propagation of proteinase K resistant PrPSc and prion infectivity. In addition, when added to cultured mouse brain slices in high concentrations, Nb484 exhibits no neurotoxicity, which is drastically different from other neurotoxic anti-PrP antibodies, suggesting that the Nb484 can be a potential therapeutic agent against prion disease. In summary, our data provides the first structure-function evidence supporting a crucial role of the hydrophobic region of PrP in forming an infectious prion.
Klíčová slova:
Animal prion diseases – Antibodies – Cell binding assay – Crystal structure – Crystallization – Enzyme-linked immunoassays – Lipids – Prion diseases
Zdroje
1. Prusiner SB. Prions. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(23):13363–83. doi: 10.1073/pnas.95.23.13363 9811807
2. Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993;90(23):10962–6. doi: 10.1073/pnas.90.23.10962 7902575.
3. Wille H, Requena JR. The Structure of PrP(Sc) Prions. Pathogens. 2018;7(1). doi: 10.3390/pathogens7010020 29414853.
4. Aguzzi A, Sigurdson C, Heikenwaelder M. Molecular mechanisms of prion pathogenesis. Annu Rev Pathol. 2008;3:11–40. doi: 10.1146/annurev.pathmechdis.3.121806.154326 18233951.
5. Knaus KJ, Morillas M, Swietnicki W, Malone M, Surewicz WK, Yee VC. Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nat Struct Biol. 2001;8(9):770–4. doi: 10.1038/nsb0901-770 11524679.
6. Haire LF, Whyte SM, Vasisht N, Gill AC, Verma C, Dodson EJ, et al. The crystal structure of the globular domain of sheep prion protein. J Mol Biol. 2004;336(5):1175–83. Epub 2004/03/24. doi: 10.1016/j.jmb.2003.12.059 15037077.
7. Khan MQ, Sweeting B, Mulligan VK, Arslan PE, Cashman NR, Pai EF, et al. Prion disease susceptibility is affected by beta-structure folding propensity and local side-chain interactions in PrP. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(46):19808–13. doi: 10.1073/pnas.1005267107 21041683.
8. Vazquez-Fernandez E, Vos MR, Afanasyev P, Cebey L, Sevillano AM, Vidal E, et al. The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy. PLoS pathogens. 2016;12(9):e1005835. doi: 10.1371/journal.ppat.1005835 27606840 alter our adherence to all PLoS Pathogens policies on sharing data and materials.
9. Garnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8 642007.
10. Zhang J, Zhang Y. Molecular dynamics studies on 3D structures of the hydrophobic region PrP(109–136). Acta Biochim Biophys Sin (Shanghai). 2013;45(6):509–19. doi: 10.1093/abbs/gmt031 23563221.
11. Antonyuk SV, Trevitt CR, Strange RW, Jackson GS, Sangar D, Batchelor M, et al. Crystal structure of human prion protein bound to a therapeutic antibody. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(8):2554–8. doi: 10.1073/pnas.0809170106 19204296.
12. Abskharon RN, Giachin G, Wohlkonig A, Soror SH, Pardon E, Legname G, et al. Probing the N-terminal beta-sheet conversion in the crystal structure of the human prion protein bound to a nanobody. Journal of the American Chemical Society. 2014;136(3):937–44. doi: 10.1021/ja407527p 24400836.
13. Wang F, Wang X, Yuan CG, Ma J. Generating a prion with bacterially expressed recombinant prion protein. Science. 2010;327(5969):1132–5. doi: 10.1126/science.1183748 20110469.
14. Wang F, Wang X, Abskharon R, Ma J. Prion infectivity is encoded exclusively within the structure of proteinase K-resistant fragments of synthetically generated recombinant PrP(Sc). Acta Neuropathol Commun. 2018;6(1):30. doi: 10.1186/s40478-018-0534-0 29699569.
15. Wang F, Yang F, Hu Y, Wang X, Jin C, Ma J. Lipid interaction converts prion protein to a PrPSc-like proteinase K-resistant conformation under physiological conditions. Biochemistry. 2007;46(23):7045–53. doi: 10.1021/bi700299h 17503780.
16. Wang F, Yin S, Wang X, Zha L, Sy MS, Ma J. Role of the highly conserved middle region of prion protein (PrP) in PrP-lipid interaction. Biochemistry. 2010;49(37):8169–76. doi: 10.1021/bi101146v 20718504.
17. Baral PK, Wieland B, Swayampakula M, Polymenidou M, Rahman MH, Kav NN, et al. Structural studies on the folded domain of the human prion protein bound to the Fab fragment of the antibody POM1. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt 11):1501–12. Epub 2012/10/24. doi: 10.1107/S0907444912037328 23090399.
18. Sonati T, Reimann RR, Falsig J, Baral PK, O’Connor T, Hornemann S, et al. The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature. 2013;501(7465):102–6. doi: 10.1038/nature12402 23903654.
19. Sigurdson CJ, Nilsson KP, Hornemann S, Manco G, Fernandez-Borges N, Schwarz P, et al. A molecular switch controls interspecies prion disease transmission in mice. J Clin Invest. 2010;120(7):2590–9. doi: 10.1172/JCI42051 20551516.
20. Bett C, Fernandez-Borges N, Kurt TD, Lucero M, Nilsson KP, Castilla J, et al. Structure of the beta2-alpha2 loop and interspecies prion transmission. FASEB journal: official publication of the Federation of American Societies for Experimental Biology. 2012;26(7):2868–76. doi: 10.1096/fj.11-200923 22490928.
21. Aguzzi A, Baumann F, Bremer J. The prion’s elusive reason for being. Annu Rev Neurosci. 2008;31:439–77. Epub 2008/06/19. doi: 10.1146/annurev.neuro.31.060407.125620 18558863.
22. Baumann F, Tolnay M, Brabeck C, Pahnke J, Kloz U, Niemann HH, et al. Lethal recessive myelin toxicity of prion protein lacking its central domain. The EMBO journal. 2007;26(2):538–47. doi: 10.1038/sj.emboj.7601510 17245436.
23. Li A, Christensen HM, Stewart LR, Roth KA, Chiesa R, Harris DA. Neonatal lethality in transgenic mice expressing prion protein with a deletion of residues 105–125. The EMBO journal. 2007;26(2):548–58. doi: 10.1038/sj.emboj.7601507 17245437.
24. Rodriguez MM, Peoc’h K, Haik S, Bouchet C, Vernengo L, Manana G, et al. A novel mutation (G114V) in the prion protein gene in a family with inherited prion disease. Neurology. 2005;64(8):1455–7. doi: 10.1212/01.WNL.0000158618.39527.93 15851745.
25. Schmitz M, Dittmar K, Llorens F, Gelpi E, Ferrer I, Schulz-Schaeffer WJ, et al. Hereditary Human Prion Diseases: an Update. Molecular neurobiology. 2017;54(6):4138–49. doi: 10.1007/s12035-016-9918-y 27324792.
26. Norstrom EM, Mastrianni JA. The AGAAAAGA palindrome in PrP is required to generate a productive PrPSc-PrPC complex that leads to prion propagation. J Biol Chem. 2005;280(29):27236–43. Epub 2005/05/27. doi: 10.1074/jbc.M413441200 15917252.
27. Forloni G, Angeretti N, Chiesa R, Monzani E, Salmona M, Bugiani O, et al. Neurotoxicity of a prion protein fragment. Nature. 1993;362(6420):543–6. doi: 10.1038/362543a0 8464494.
28. Jobling MF, Stewart LR, White AR, McLean C, Friedhuber A, Maher F, et al. The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106–126. Journal of neurochemistry. 1999;73(4):1557–65. doi: 10.1046/j.1471-4159.1999.0731557.x 10501201.
29. Kuwata K, Matumoto T, Cheng H, Nagayama K, James TL, Roder H. NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(25):14790–5. doi: 10.1073/pnas.2433563100 14657385.
30. Lim KH, Nguyen TN, Damo SM, Mazur T, Ball HL, Prusiner SB, et al. Solid-state NMR structural studies of the fibril form of a mutant mouse prion peptide PrP89-143(P101L). Solid State Nucl Magn Reson. 2006;29(1–3):183–90. doi: 10.1016/j.ssnmr.2005.09.017 16256316.
31. Rodriguez JA, Jiang L, Eisenberg DS. Toward the Atomic Structure of PrP(Sc). Cold Spring Harb Perspect Biol. 2017;9(9). doi: 10.1101/cshperspect.a031336 28096267.
32. Yu L, Lee SJ, Yee VC. Crystal Structures of Polymorphic Prion Protein beta1 Peptides Reveal Variable Steric Zipper Conformations. Biochemistry. 2015;54(23):3640–8. doi: 10.1021/acs.biochem.5b00425
33. Apostol MI, Sawaya MR, Cascio D, Eisenberg D. Crystallographic studies of prion protein (PrP) segments suggest how structural changes encoded by polymorphism at residue 129 modulate susceptibility to human prion disease. J Biol Chem. 2010;285(39):29671–5. doi: 10.1074/jbc.C110.158303 20685658.
34. Smirnovas V, Baron GS, Offerdahl DK, Raymond GJ, Caughey B, Surewicz WK. Structural organization of brain-derived mammalian prions examined by hydrogen-deuterium exchange. Nat Struct Mol Biol. 2011;18(4):504–6. doi: 10.1038/nsmb.2035 21441913.
35. Baral PK, Swayampakula M, Rout MK, Kav NN, Spyracopoulos L, Aguzzi A, et al. Structural basis of prion inhibition by phenothiazine compounds. Structure. 2014;22(2):291–303. doi: 10.1016/j.str.2013.11.009 24373770.
36. Diringer H, Ehlers B. Chemoprophylaxis of scrapie in mice. J Gen Virol. 1991;72 (Pt 2):457–60. Epub 1991/02/01. doi: 10.1099/0022-1317-72-2-457 1704414.
37. Forloni G, Iussich S, Awan T, Colombo L, Angeretti N, Girola L, et al. Tetracyclines affect prion infectivity. Proc Natl Acad Sci U S A. 2002;99(16):10849–54. Epub 2002/08/01. doi: 10.1073/pnas.162195499 12149459.
38. Caspi S, Halimi M, Yanai A, Sasson SB, Taraboulos A, Gabizon R. The anti-prion activity of Congo red. Putative mechanism. J Biol Chem. 1998;273(6):3484–9. Epub 1998/03/07. doi: 10.1074/jbc.273.6.3484 9452472.
39. Adjou KT, Privat N, Demart S, Deslys JP, Seman M, Hauw JJ, et al. MS-8209, an amphotericin B analogue, delays the appearance of spongiosis, astrogliosis and PrPres accumulation in the brain of scrapie-infected hamsters. J Comp Pathol. 2000;122(1):3–8. Epub 2000/01/11. doi: 10.1053/jcpa.1999.0338 10627386.
40. Jones DR, Taylor WA, Bate C, David M, Tayebi M. A camelid anti-PrP antibody abrogates PrP replication in prion-permissive neuroblastoma cell lines. PloS one. 2010;5(3):e9804. doi: 10.1371/journal.pone.0009804 20339552.
41. Brazier MW, Wall VA, Brazier BW, Masters CL, Collins SJ. Therapeutic interventions ameliorating prion disease. Expert review of anti-infective therapy. 2009;7(1):83–105. doi: 10.1586/14787210.7.1.83 19622059.
42. Aguzzi A, Lakkaraju AKK, Frontzek K. Toward Therapy of Human Prion Diseases. Annual review of pharmacology and toxicology. 2018;58:331–51. doi: 10.1146/annurev-pharmtox-010617-052745 28961066.
43. Eghiaian F, Grosclaude J, Lesceu S, Debey P, Doublet B, Treguer E, et al. Insight into the PrPC—>PrPSc conversion from the structures of antibody-bound ovine prion scrapie-susceptibility variants. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(28):10254–9. doi: 10.1073/pnas.0400014101 15240887.
44. Abskharon RN, Soror SH, Pardon E, El Hassan H, Legname G, Steyaert J, et al. Combining in-situ proteolysis and microseed matrix screening to promote crystallization of PrPc-nanobody complexes. Protein Eng Des Sel. 2011;24(9):737–41. Epub 2011/05/04. doi: 10.1093/protein/gzr017 21536542.
45. Abskharon RN, Ramboarina S, El Hassan H, Gad W, Apostol MI, Giachin G, et al. A novel expression system for production of soluble prion proteins in E. coli. Microb Cell Fact. 2012;11:6. doi: 10.1186/1475-2859-11-6 22233534.
46. Zahn R, von Schroetter C, Wuthrich K. Human prion proteins expressed in Escherichia coli and purified by high-affinity column refolding. FEBS letters. 1997;417(3):400–4. doi: 10.1016/s0014-5793(97)01330-6 9409760.
47. Abskharon R, Wang F, Vander Stel KJ, Sinniah K, Ma J. The role of the unusual threonine string in the conversion of prion protein. Scientific reports. 2016;6:38877. doi: 10.1038/srep38877 27982059.
48. Pardon E, Laeremans T, Triest S, Rasmussen SG, Wohlkonig A, Ruf A, et al. A general protocol for the generation of Nanobodies for structural biology. Nature protocols. 2014;9(3):674–93. doi: 10.1038/nprot.2014.039 24577359.
49. Abskharon RN, Soror SH, Pardon E, El Hassan H, Legname G, Steyaert J, et al. Crystallization and preliminary X-ray diffraction analysis of a specific VHH domain against mouse prion protein. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010;66(Pt 12):1644–6. doi: 10.1107/S1744309110042168 21139215.
50. Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr. 2010;66(Pt 2):133–44. doi: 10.1107/S0907444909047374 20124693.
51. McCoy AJ. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr D Biol Crystallogr. 2007;63(Pt 1):32–41. doi: 10.1107/S0907444906045975 17164524.
52. Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2126–32. doi: 10.1107/S0907444904019158 15572765.
53. Vagin AA, Steiner RA, Lebedev AA, Potterton L, McNicholas S, Long F, et al. REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 12 Pt 1):2184–95. doi: 10.1107/S0907444904023510 15572771.
54. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, et al. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr. 2012;68(Pt 4):352–67. Epub 2012/04/17. doi: 10.1107/S0907444912001308 22505256.
55. Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995;8(2):127–34. doi: 10.1093/protein/8.2.127 7630882.
56. Hutchinson EG, Thornton JM. PROMOTIF—a program to identify and analyze structural motifs in proteins. Protein science: a publication of the Protein Society. 1996;5(2):212–20. doi: 10.1002/pro.5560050204 8745398.
57. Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97. doi: 10.1016/j.jmb.2007.05.022 17681537.
58. Mahal SP, Baker CA, Demczyk CA, Smith EW, Julius C, Weissmann C. Prion strain discrimination in cell culture: the cell panel assay. Proc Natl Acad Sci U S A. 2007;104(52):20908–13. doi: 10.1073/pnas.0710054104 18077360.
59. Polymenidou M, Moos R, Scott M, Sigurdson C, Shi YZ, Yajima B, et al. The POM monoclonals: a comprehensive set of antibodies to non-overlapping prion protein epitopes. PloS one. 2008;3(12):e3872. doi: 10.1371/journal.pone.0003872 19060956.
60. Falsig J, Aguzzi A. The prion organotypic slice culture assay—POSCA. Nature protocols. 2008;3(4):555–62. doi: 10.1038/nprot.2008.13 18388937.
61. Hurtado de Mendoza T, Balana B, Slesinger PA, Verma IM. Organotypic cerebellar cultures: apoptotic challenges and detection. J Vis Exp. 2011;(51). doi: 10.3791/2564 21633327.
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2019 Číslo 12
- Stillova choroba: vzácné a závažné systémové onemocnění
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Coxiella burnetii Type 4B Secretion System-dependent manipulation of endolysosomal maturation is required for bacterial growth
- IL-22 produced by type 3 innate lymphoid cells (ILC3s) reduces the mortality of type 2 diabetes mellitus (T2DM) mice infected with Mycobacterium tuberculosis
- The pandemic Escherichia coli sequence type 131 strain is acquired even in the absence of antibiotic exposure
- A role of hypoxia-inducible factor 1 alpha in Mouse Gammaherpesvirus 68 (MHV68) lytic replication and reactivation from latency