Genome-scale CRISPR screening for modifiers of cellular LDL uptake
Autoři:
Brian T. Emmer aff001; Emily J. Sherman aff002; Paul J. Lascuna aff002; Sarah E. Graham aff001; Cristen J. Willer aff001; David Ginsburg aff001
Působiště autorů:
Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
aff001; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
aff002; Chemical Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
aff003; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
aff004; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
aff005; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
aff006; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
aff007
Vyšlo v časopise:
Genome-scale CRISPR screening for modifiers of cellular LDL uptake. PLoS Genet 17(1): e1009285. doi:10.1371/journal.pgen.1009285
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009285
Souhrn
Hypercholesterolemia is a causal and modifiable risk factor for atherosclerotic cardiovascular disease. A critical pathway regulating cholesterol homeostasis involves the receptor-mediated endocytosis of low-density lipoproteins into hepatocytes, mediated by the LDL receptor. We applied genome-scale CRISPR screening to query the genetic determinants of cellular LDL uptake in HuH7 cells cultured under either lipoprotein-rich or lipoprotein-starved conditions. Candidate LDL uptake regulators were validated through the synthesis and secondary screening of a customized library of gRNA at greater depth of coverage. This secondary screen yielded significantly improved performance relative to the primary genome-wide screen, with better discrimination of internal positive controls, no identification of negative controls, and improved concordance between screen hits at both the gene and gRNA level. We then applied our customized gRNA library to orthogonal screens that tested for the specificity of each candidate regulator for LDL versus transferrin endocytosis, the presence or absence of genetic epistasis with LDLR deletion, the impact of each perturbation on LDLR expression and trafficking, and the generalizability of LDL uptake modifiers across multiple cell types. These findings identified several previously unrecognized genes with putative roles in LDL uptake and suggest mechanisms for their functional interaction with LDLR.
Klíčová slova:
CRISPR – Gene regulation – Genetic screens – Genome-wide association studies – Guide RNA – Cholesterol – Library screening – Regulator genes
Zdroje
1. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72. Epub 2017/04/27. doi: 10.1093/eurheartj/ehx144 28444290; PubMed Central PMCID: PMC5837225.
2. Luo J, Yang H, Song BL. Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol. 2019. Epub 2019/12/19. doi: 10.1038/s41580-019-0190-7 31848472.
3. Goldstein JL, Brown MS. A century of cholesterol and coronaries: from plaques to genes to statins. Cell. 2015;161(1):161–72. Epub 2015/03/31. doi: 10.1016/j.cell.2015.01.036 25815993; PubMed Central PMCID: PMC4525717.
4. Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell. 2012;148(6):1242–57. Epub 2012/03/20. doi: 10.1016/j.cell.2012.03.001 22424232; PubMed Central PMCID: PMC3319439.
5. Horton JD, Cohen JC, Hobbs HH. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci. 2007;32(2):71–7. Epub 2007/01/12. doi: 10.1016/j.tibs.2006.12.008 17215125; PubMed Central PMCID: PMC2711871.
6. Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest. 2003;111(12):1795–803. Epub 2003/06/19. doi: 10.1172/JCI18925 12813012; PubMed Central PMCID: PMC161432.
7. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125–31. Epub 2002/05/08. doi: 10.1172/JCI15593 11994399; PubMed Central PMCID: PMC150968.
8. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89(3):331–40. Epub 1997/05/02. doi: 10.1016/s0092-8674(00)80213-5 9150132.
9. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83. Epub 2013/10/08. doi: 10.1038/ng.2797 24097068; PubMed Central PMCID: PMC3838666.
10. Paththinige CS, Sirisena ND, Dissanayake V. Genetic determinants of inherited susceptibility to hypercholesterolemia—a comprehensive literature review. Lipids Health Dis. 2017;16(1):103. Epub 2017/06/05. doi: 10.1186/s12944-017-0488-4 28577571; PubMed Central PMCID: PMC5457620.
11. Peloso GM, Natarajan P. Insights from population-based analyses of plasma lipids across the allele frequency spectrum. Curr Opin Genet Dev. 2018;50:1–6. Epub 2018/02/16. doi: 10.1016/j.gde.2018.01.003 29448166; PubMed Central PMCID: PMC6087690.
12. Dron JS, Hegele RA. Polygenic influences on dyslipidemias. Curr Opin Lipidol. 2018;29(2):133–43. Epub 2018/01/05. doi: 10.1097/MOL.0000000000000482 29300201.
13. Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 2015;16(5):299–311. doi: 10.1038/nrg3899 25854182; PubMed Central PMCID: PMC4503232.
14. Emmer BT, Hesketh GG, Kotnik E, Tang VT, Lascuna PJ, Xiang J, et al. The cargo receptor SURF4 promotes the efficient cellular secretion of PCSK9. Elife. 2018;7. Epub 2018/09/27. doi: 10.7554/eLife.38839 30251625; PubMed Central PMCID: PMC6156083.
15. Nakabayashi H, Taketa K, Miyano K, Yamane T, Sato J. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 1982;42(9):3858–63. Epub 1982/09/01. 6286115.
16. Blattmann P, Henriques D, Zimmermann M, Frommelt F, Sauer U, Saez-Rodriguez J, et al. Systems Pharmacology Dissection of Cholesterol Regulation Reveals Determinants of Large Pharmacodynamic Variability between Cell Lines. Cell Syst. 2017;5(6):604–19 e7. Epub 2017/12/12. doi: 10.1016/j.cels.2017.11.002 29226804; PubMed Central PMCID: PMC5747350.
17. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783–4. doi: 10.1038/nmeth.3047 25075903; PubMed Central PMCID: PMC4486245.
18. Zelcer N, Hong C, Boyadjian R, Tontonoz P. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor. Science. 2009;325(5936):100–4. Epub 2009/06/13. doi: 10.1126/science.1168974 19520913; PubMed Central PMCID: PMC2777523.
19. Kraehling JR, Chidlow JH, Rajagopal C, Sugiyama MG, Fowler JW, Lee MY, et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun. 2016;7:13516. Epub 2016/11/22. doi: 10.1038/ncomms13516 27869117; PubMed Central PMCID: PMC5121336 company had no influence in study design, data collection and analyses. Other authors declare no competing financial interests.
20. Wu B, Guo W. The Exocyst at a Glance. J Cell Sci. 2015;128(16):2957–64. Epub 2015/08/05. doi: 10.1242/jcs.156398 26240175; PubMed Central PMCID: PMC4541039.
21. Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell. 1980;21(1):205–15. Epub 1980/08/01. doi: 10.1016/0092-8674(80)90128-2 6996832.
22. Grindstaff KK, Yeaman C, Anandasabapathy N, Hsu SC, Rodriguez-Boulan E, Scheller RH, et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell. 1998;93(5):731–40. Epub 1998/06/18. doi: 10.1016/s0092-8674(00)81435-x 9630218.
23. Redpath GMI, Betzler VM, Rossatti P, Rossy J. Membrane Heterogeneity Controls Cellular Endocytic Trafficking. Front Cell Dev Biol. 2020;8:757. Epub 2020/08/28. doi: 10.3389/fcell.2020.00757 32850860; PubMed Central PMCID: PMC7419583.
24. Naslavsky N, Caplan S. The enigmatic endosome—sorting the ins and outs of endocytic trafficking. J Cell Sci. 2018;131(13). Epub 2018/07/08. doi: 10.1242/jcs.216499 29980602; PubMed Central PMCID: PMC6051342.
25. Weeratunga S, Paul B, Collins BM. Recognising the signals for endosomal trafficking. Curr Opin Cell Biol. 2020;65:17–27. Epub 2020/03/11. doi: 10.1016/j.ceb.2020.02.005 32155566.
26. Keyel PA, Mishra SK, Roth R, Heuser JE, Watkins SC, Traub LM. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors. Mol Biol Cell. 2006;17(10):4300–17. Epub 2006/07/28. doi: 10.1091/mbc.e06-05-0421 16870701; PubMed Central PMCID: PMC1635374.
27. Dunn KW, McGraw TE, Maxfield FR. Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J Cell Biol. 1989;109(6 Pt 2):3303–14. Epub 1989/12/01. doi: 10.1083/jcb.109.6.3303 2600137; PubMed Central PMCID: PMC2115921.
28. Ghosh RN, Gelman DL, Maxfield FR. Quantification of low density lipoprotein and transferrin endocytic sorting HEp2 cells using confocal microscopy. J Cell Sci. 1994;107 (Pt 8):2177–89. Epub 1994/08/01. 7983176.
29. Bartuzi P, Billadeau DD, Favier R, Rong S, Dekker D, Fedoseienko A, et al. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL. Nat Commun. 2016;7:10961. Epub 2016/03/12. doi: 10.1038/ncomms10961 26965651; PubMed Central PMCID: PMC4792963.
30. McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, et al. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol. 2017;19(10):1214–25. Epub 2017/09/12. doi: 10.1038/ncb3610 28892079; PubMed Central PMCID: PMC5790113.
31. Cuchel M, Bruckert E, Ginsberg HN, Raal FJ, Santos RD, Hegele RA, et al. Homozygous familial hypercholesterolaemia: new insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur Heart J. 2014;35(32):2146–57. Epub 2014/07/24. doi: 10.1093/eurheartj/ehu274 25053660; PubMed Central PMCID: PMC4139706.
32. Shen WJ, Asthana S, Kraemer FB, Azhar S. Scavenger receptor B type 1: expression, molecular regulation, and cholesterol transport function. J Lipid Res. 2018;59(7):1114–31. Epub 2018/05/04. doi: 10.1194/jlr.R083121 29720388; PubMed Central PMCID: PMC6027903.
33. Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42(22):e168. Epub 2014/10/11. doi: 10.1093/nar/gku936 25300484; PubMed Central PMCID: PMC4267669.
34. Weber K, Bartsch U, Stocking C, Fehse B. A multicolor panel of novel lentiviral "gene ontology" (LeGO) vectors for functional gene analysis. Mol Ther. 2008;16(4):698–706. Epub 2008/03/26. doi: 10.1038/mt.2008.6 18362927.
35. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15(12):554. doi: 10.1186/s13059-014-0554-4 25476604; PubMed Central PMCID: PMC4290824.
36. Sanson KR, Hanna RE, Hegde M, Donovan KF, Strand C, Sullender ME, et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat Commun. 2018;9(1):5416. Epub 2018/12/24. doi: 10.1038/s41467-018-07901-8 30575746; PubMed Central PMCID: PMC6303322.
37. Zhou W, Nielsen JB, Fritsche LG, Dey R, Gabrielsen ME, Wolford BN, et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet. 2018;50(9):1335–41. Epub 2018/08/15. doi: 10.1038/s41588-018-0184-y 30104761; PubMed Central PMCID: PMC6119127.
38. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779. Epub 2015/04/01. doi: 10.1371/journal.pmed.1001779 25826379; PubMed Central PMCID: PMC4380465.
39. Karolchik D, Hinrichs AS, Kent WJ. The UCSC Genome Browser. Curr Protoc Bioinformatics. 2009;Chapter 1:Unit1 4. Epub 2009/12/04. doi: 10.1002/0471250953.bi0104s28 19957273; PubMed Central PMCID: PMC2834533.
40. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47(D1):D419–D26. Epub 2018/11/09. doi: 10.1093/nar/gky1038 30407594; PubMed Central PMCID: PMC6323939.
Článek vyšel v časopise
PLOS Genetics
2021 Číslo 1
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- „Jednohubky“ z klinického výzkumu – 2024/44
Nejčtenější v tomto čísle
- MED19 alters AR occupancy and gene expression in prostate cancer cells, driving MAOA expression and growth under low androgen
- A rare coding mutation in the MAST2 gene causes venous thrombosis in a French family with unexplained thrombophilia: The Breizh MAST2 Arg89Gln variant
- Population structure of indigenous inhabitants of Arabia
- Epithelial cell-turnover ensures robust coordination of tissue growth in Drosophila ribosomal protein mutants