Consequences of adaptation of TAL effectors on host susceptibility to Xanthomonas
Autoři:
Doron Teper aff001; Nian Wang aff001
Působiště autorů:
Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
aff001
Vyšlo v časopise:
Consequences of adaptation of TAL effectors on host susceptibility to Xanthomonas. PLoS Genet 17(1): e1009310. doi:10.1371/journal.pgen.1009310
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009310
Souhrn
Transcription activator-like effectors (TALEs) are virulence factors of Xanthomonas that induce the expression of host susceptibility (S) genes by specifically binding to effector binding elements (EBEs) in their promoter regions. The DNA binding specificity of TALEs is dictated by their tandem repeat regions, which are highly variable between different TALEs. Mutation of the EBEs of S genes is being utilized as a key strategy to generate resistant crops against TALE-dependent pathogens. However, TALE adaptations through rearrangement of their repeat regions is a potential obstacle for successful implementation of this strategy. We investigated the consequences of TALE adaptations in the citrus pathogen Xanthomonas citri subsp. citri (Xcc), in which PthA4 is the TALE required for pathogenicity, whereas CsLOB1 is the corresponding susceptibility gene, on host resistance. Seven TALEs, containing two-to-nine mismatching-repeats to the EBEPthA4 that were unable to induce CsLOB1 expression, were introduced into Xcc pthA4:Tn5 and adaptation was simulated by repeated inoculations into and isolations from sweet orange for a duration of 30 cycles. While initially all strains failed to promote disease, symptoms started to appear between 9–28 passages in four TALEs, which originally harbored two-to-five mismatches. Sequence analysis of adapted TALEs identified deletions and mutations within the TALE repeat regions which enhanced putative affinity to the CsLOB1 promoter. Sequence analyses suggest that TALEs adaptations result from recombinations between repeats of the TALEs. Reintroduction of these adapted TALEs into Xcc pthA4:Tn5 restored the ability to induce the expression of CsLOB1, promote disease symptoms and colonize host plants. TALEs harboring seven-to-nine mismatches were unable to adapt to overcome the incompatible interaction. Our study experimentally documented TALE adaptations to incompatible EBE and provided strategic guidance for generation of disease resistant crops against TALE-dependent pathogens.
Klíčová slova:
Citrus – Evolutionary adaptation – Leaves – Nucleotides – Oranges – Point mutation – Promoter regions – Xanthomonas
Zdroje
1. Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol. 2010;48:419–36. doi: 10.1146/annurev-phyto-080508-081936 19400638
2. Mak AN-S, Bradley P, Bogdanove AJ, Stoddard BL. TAL effectors: function, structure, engineering and applications. Curr Opin Struct Biol. 2013;23:93–9. doi: 10.1016/j.sbi.2012.11.001 23265998
3. Moore R, Chandrahas A, Bleris L. Transcription activator-like effectors: a toolkit for synthetic biology. ACS Synth Biol. 2014;3:708–16. doi: 10.1021/sb400137b 24933470
4. Hutin M, Pérez-Quintero AL, Lopez C, Szurek B. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. Front Plant Sci. 2015;6:535. doi: 10.3389/fpls.2015.00535 26236326
5. An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, et al. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev. 2019; doi: 10.1093/femsre/fuz024 31578554
6. Boch J, Bonas U, Lahaye T. TAL effectors—pathogen strategies and plant resistance engineering. New Phytol. 2014;204:823–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25539004 doi: 10.1111/nph.13015 25539004
7. Muñoz Bodnar A, Bernal A, Szurek B, López CE. Tell me a tale of TALEs. Mol Biotechnol. 2013;53:228–235. doi: 10.1007/s12033-012-9619-3 23114874
8. Perez-Quintero AL, Szurek B. A decade decoded: spies and hackers in the history of TAL effectors research. Annu Rev Phytopathol. 2019;57:459–481. doi: 10.1146/annurev-phyto-082718-100026 31387457
9. Popov G, Fraiture M, Brunner F, Sessa G. Multiple Xanthomonas euvesicatoria type III effectors inhibit flg22-triggered immunity. Mol Plant Microbe Interact. 2016;29:651–60. doi: 10.1094/MPMI-07-16-0137-R 27529660
10. Long J, Song C, Yan F, Zhou J, Zhou H, Yang B. Non-TAL effectors from Xanthomonas oryzae pv. oryzae suppress peptidoglycan-triggered MAPK activation in rice. Front Plant Sci. 2018;9:1857. doi: 10.3389/fpls.2018.01857 30631333
11. Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, et al. Xanthomonas diversity, virulence and plant-pathogen interactions. Nat Rev Microbiol. 2020; doi: 10.1038/s41579-020-0361-8 32346148
12. Yang B, Sugio A, White FF. Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci U S A. 2006;103:10503–10508. doi: 10.1073/pnas.0604088103 16798873
13. Antony G, Zhou J, Huang S, Li T, Liu B, White F, et al. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell. 2010;22:3864–76. doi: 10.1105/tpc.110.078964 21098734
14. Verdier V, Triplett LR, Hummel AW, Corral R, Cernadas RA, Schmidt CL, et al. Transcription activator-like (TAL) effectors targeting OsSWEET genes enhance virulence on diverse rice (Oryza sativa) varieties when expressed individually in a TAL effector-deficient strain of Xanthomonas oryzae. New Phytol. 2012;196:1197–207. doi: 10.1111/j.1469-8137.2012.04367.x 23078195
15. Cernadas RA, Doyle EL, Niño-Liu DO, Wilkins KE, Bancroft T, Wang L, et al. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog. 2014;10:e1003972. doi: 10.1371/journal.ppat.1003972 24586171
16. Schwartz AR, Morbitzer R, Lahaye T, Staskawicz BJ. TALE-induced bHLH transcription factors that activate a pectate lyase contribute to water soaking in bacterial spot of tomato. Proc Natl Acad Sci U S A. 2017;114:E897–E903. doi: 10.1073/pnas.1620407114 28100489
17. Kay S, Hahn S, Marois E, Hause G, Bonas U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science. 2007;318:648–51. doi: 10.1126/science.1144956 17962565
18. Peng Z, Hu Y, Zhang J, Huguet-Tapia JC, Block AK, Park S, et al. Xanthomonas translucens commandeers the host rate-limiting step in ABA biosynthesis for disease susceptibility. Proc Natl Acad Sci. 2019;116:20938–20946. doi: 10.1073/pnas.1911660116 31575748
19. Hu Y, Zhang J, Jia H, Sosso D, Li T, Frommer WB, et al. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. Proc Natl Acad Sci. 2014;111:E521–E529. doi: 10.1073/pnas.1313271111 24474801
20. Duan S, Jia H, Pang Z, Teper D, White F, Jones J, et al. Functional characterization of the citrus canker susceptibility gene CsLOB1. Mol Plant Pathol. 2018; doi: 10.1111/mpp.12667 29461671
21. Al-Saadi A, Reddy JD, Duan YP, Brunings AM, Yuan Q, Gabriel DW. All five host-range variants of Xanthomonas citri carry one pthA homolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Mol Plant Microbe Interact. 2007;20:934–43. doi: 10.1094/MPMI-20-8-0934 17722697
22. Hu Y, Duan S, Zhang Y, Shantharaj D, Jones JB, Wang N. Temporal transcription profiling of sweet orange in response to PthA4-mediated Xanthomonas citri subsp. citri infection. Phytopathology. 2016;106:442–451. doi: 10.1094/PHYTO-09-15-0201-R 26780431
23. Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, et al. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature. 2005;435:1122–5. doi: 10.1038/nature03630 15973413
24. Schornack S, Ballvora A, Gürlebeck D, Peart J, Baulcombe D, Ganal M, et al. The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J. 2004;37:46–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14675431 doi: 10.1046/j.1365-313x.2003.01937.x 14675431
25. Römer P, Hahn S, Jordan T, Strauss T, Bonas U, Lahaye T. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science. 2007;318:645–8. doi: 10.1126/science.1144958 17962564
26. Hutin M, Sabot F, Ghesquière A, Koebnik R, Szurek B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J. 2015;84:694–703. doi: 10.1111/tpj.13042 26426417
27. Ji Z, Ji C, Liu B, Zou L, Chen G, Yang B. Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Nat Commun. 2016;7:13435. doi: 10.1038/ncomms13435 27811915
28. Zaka A, Grande G, Coronejo T, Quibod IL, Chen C-W, Chang S-J, et al. Natural variations in the promoter of OsSWEET13 and OsSWEET14 expand the range of resistance against Xanthomonas oryzae pv. oryzae. PLoS One. 2018;13:e0203711. doi: 10.1371/journal.pone.0203711 30212546
29. Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, et al. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell. 2014;26:497–515. doi: 10.1105/tpc.113.119255 24488961
30. Wang C, Zhang X, Fan Y, Gao Y, Zhu Q, Zheng C, et al. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol Plant. 2015;8:290–302. doi: 10.1016/j.molp.2014.10.010 25616388
31. Wang J, Zeng X, Tian D, Yang X, Wang L, Yin Z. The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice. Mol Plant Pathol. 2018; doi: 10.1111/mpp.12684 29603592
32. Schandry N, Jacobs JM, Szurek B, Perez-Quintero AL. A cautionary TALE: how plant breeding may have favoured expanded TALE repertoires in Xanthomonas. Mol Plant Pathol. 2018;19:1297–1301. doi: 10.1111/mpp.12670 29723447
33. Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom J-S, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 2015;82:632–43. doi: 10.1111/tpj.12838 25824104
34. Streubel J, Pesce C, Hutin M, Koebnik R, Boch J, Szurek B. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol. 2013;200:808–19. doi: 10.1111/nph.12411 23879865
35. Yu Y, Streubel J, Balzergue S, Champion A, Boch J, Koebnik R, et al. Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Mol Plant Microbe Interact. 2011;24:1102–13. doi: 10.1094/MPMI-11-10-0254 21679014
36. Jalan N, Kumar D, Yu F, Jones JB, Graham JH, Wang N. Complete genome sequence of Xanthomonas citri subsp. citri strain Aw12879, a restricted-host-range citrus canker-causing bacterium. Genome Announc. 2013;1. doi: 10.1128/genomeA.00235-13 23682143
37. Li T, Liu B, Spalding MH, Weeks DP, Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol. 2012;30:390–2. doi: 10.1038/nbt.2199 22565958
38. Blanvillain-Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H, Szurek B, et al. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol J. 2017;15:306–317. doi: 10.1111/pbi.12613 27539813
39. Jia H, Zhang Y, Orbović V, Xu J, White FF, Jones JB, et al. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol J. 2017;15:817–823. doi: 10.1111/pbi.12677 27936512
40. Peng A, Chen S, Lei T, Xu L, He Y, Wu L, et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol J. 2017;15:1509–1519. doi: 10.1111/pbi.12733 28371200
41. Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol. 2019;37:1344–1350. doi: 10.1038/s41587-019-0267-z 31659337
42. Jia H, Wang N. Generation of homozygous canker-resistant citrus in the T0 generation using CRISPR-SpCas9p. Plant Biotechnol J. 2020; pbi.13375. doi: 10.1111/pbi.13375 32167662
43. Lovett ST. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol Microbiol. 2004;52:1243–53. doi: 10.1111/j.1365-2958.2004.04076.x 15165229
44. van den Bosch TJM, Niemi O, Welte CU. Single gene enables plant pathogenic Pectobacterium to overcome host-specific chemical defense. Mol Plant Pathol. 2020;21:349–359. doi: 10.1111/mpp.12900 31872947
45. Stice SP, Thao KK, Khang CH, Baltrus DA, Dutta B, Kvitko BH. Thiosulfinate Tolerance Is a Virulence Strategy of an Atypical Bacterial Pathogen of Onion. Curr Biol. 2020;30:3130–3140.e6. doi: 10.1016/j.cub.2020.05.092 32619480
46. Wei Y, Caceres-Moreno C, Jimenez-Gongora T, Wang K, Sang Y, Lozano-Duran R, et al. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. Plant Biotechnol J. 2018;16:1349–1362. doi: 10.1111/pbi.12874 29265643
47. Wang S, Sun Z, Wang H, Liu L, Lu F, Yang J, et al. Rice OsFLS2-mediated perception of bacterial flagellins is evaded by Xanthomonas oryzae pvs. oryzae and oryzicola. Mol Plant. 2015;8:1024–1037. doi: 10.1016/j.molp.2015.01.012 25617720
48. Stall RE, Jones JB, Minsavage G V. Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. Annu Rev Phytopathol. 2009;47:265–84. doi: 10.1146/annurev-phyto-080508-081752 19400644
49. Fothergill JL, Neill DR, Loman N, Winstanley C, Kadioglu A. Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs. Nat Commun. 2014;5:4780. doi: 10.1038/ncomms5780 25179232
50. Bricio-Moreno L, Sheridan VH, Goodhead I, Armstrong S, Wong JKL, Waters EM, et al. Evolutionary trade-offs associated with loss of PmrB function in host-adapted Pseudomonas aeruginosa. Nat Commun. 2018;9:2635. doi: 10.1038/s41467-018-04996-x 29980663
51. Guidot A, Jiang W, Ferdy J-B, Thébaud C, Barberis P, Gouzy J, et al. Multihost experimental evolution of the pathogen Ralstonia solanacearum unveils genes involved in adaptation to plants. Mol Biol Evol. 2014;31:2913–28. doi: 10.1093/molbev/msu229 25086002
52. Perrier A, Peyraud R, Rengel D, Barlet X, Lucasson E, Gouzy J, et al. Enhanced in planta fitness through adaptive mutations in EfpR, a dual regulator of virulence and metabolic functions in the plant pathogen Ralstonia solanacearum. Desveaux D, editor. PLOS Pathog. 2016;12:e1006044. doi: 10.1371/journal.ppat.1006044 27911943
53. Trivedi P, Wang N. Host immune responses accelerate pathogen evolution. ISME J. 2014;8:727–31. doi: 10.1038/ismej.2013.215 24304673
54. Teper D, Xu J, Li J, Wang N. The immunity of Meiwa kumquat against Xanthomonas citri is associated with a known susceptibility gene induced by a transcription activator-like effector. Yang B, editor. PLOS Pathog. 2020;16:e1008886. doi: 10.1371/journal.ppat.1008886 32931525
55. Ference CM, Gochez AM, Behlau F, Wang N, Graham JH, Jones JB. Recent advances in the understanding of Xanthomonas citri ssp. citri pathogenesis and citrus canker disease management. Mol Plant Pathol. 2018;19:1302–1318. doi: 10.1111/mpp.12638 29105297
56. Doyle EL, Booher NJ, Standage DS, Voytas DF, Brendel VP, Vandyk JK, et al. TAL Effector-Nucleotide Targeter (TALE-NT) 2.0: tools for TAL effector design and target prediction. Nucleic Acids Res. 2012;40:W117–22. doi: 10.1093/nar/gks608 22693217
57. Pérez-Quintero AL, Lamy L, Gordon JL, Escalon A, Cunnac S, Szurek B, et al. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically. Front Plant Sci. 2015;6. doi: 10.3389/fpls.2015.00006 25657654
58. Gabriel DW, Hunter JE, Kingsley MT, Miller JW, Lazo GR. Clonal Population Structure of Xanthomonas campestris and Genetic Diversity Among Citrus Canker Strains. Mol Plant-Microbe Interact. 1988;1:59. doi: 10.1094/MPMI-1-059
59. Sun X, Stall RE, Jones JB, Cubero J, Gottwald TR, Graham JH, et al. Detection and characterization of a new strain of citrus canker bacteria from key/mexican lime and Alemow in south Florida. Plant Dis. 2004;88:1179–1188. doi: 10.1094/PDIS.2004.88.11.1179 30795311
60. Wu GA, Terol J, Ibanez V, López-García A, Pérez-Román E, Borredá C, et al. Genomics of the origin and evolution of citrus. Nature. 2018;554:311–316. doi: 10.1038/nature25447 29414943
61. Yan Q, Wang N. High-throughput screening and analysis of genes of Xanthomonas citri subsp. citri involved in citrus canker symptom development. Mol Plant Microbe Interact. 2011;25:1–72. doi: 10.1094/MPMI-05-11-0121 21899385
62. Li Z, Zou L, Ye G, Xiong L, Ji Z, Zakria M, et al. A potential disease susceptibility gene CsLOB of citrus is targeted by a major virulence effector PthA of Xanthomonas citri subsp. citri. Mol Plant. 2014;7:912–5. doi: 10.1093/mp/sst176 24398629
63. Erkes A, Reschke M, Boch J, Grau J. Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae. Genome Biol Evol. 2017;9:1599–1615. doi: 10.1093/gbe/evx108 28637323
64. Lovett ST, Gluckman TJ, Simon PJ, Sutera VA, Drapkin PT. Recombination between repeats in Escherichia coli by a recA-independent, proximity-sensitive mechanism. Mol Gen Genet. 1994;245:294–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7816039 doi: 10.1007/BF00290109 7816039
65. Franklin NC. Extraordinary recombinational events in Escherichia coli. Their independence of the rec+ function. Genetics. 1967;55:699–707. Available from: http://www.ncbi.nlm.nih.gov/pubmed/5341209 5341209
66. Lovett ST, Feschenko V V. Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate. Proc Natl Acad Sci U S A. 1996;93:7120–4. doi: 10.1073/pnas.93.14.7120 8692955
67. Kovach ME, Elzer PH, Steven Hill D, Robertson GT, Farris MA, Roop RM, et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene. 1995;166:175–176. doi: 10.1016/0378-1119(95)00584-1 8529885
68. Buch AD, Archana G, Naresh Kumar G. Broad-host-range plasmid-mediated metabolic perturbations in Pseudomonas fluorescens 13525. Appl Microbiol Biotechnol. 2010;88:209–218. doi: 10.1007/s00253-010-2717-x 20571795
69. Jia H, Orbović V, Wang N. CRISPR -LbCas12a-mediated modification of citrus. Plant Biotechnol J. 2019;17:1928–1937. doi: 10.1111/pbi.13109 30908830
70. Jia H, Orbovic V, Jones JB, Wang N. Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection. Plant Biotechnol J. 2016;14:1291–301. doi: 10.1111/pbi.12495 27071672
71. Domingues MN, De Souza TA, Cernadas RA, de Oliveira MLP, Docena C, Farah CS, et al. The Xanthomonas citri effector protein PthA interacts with citrus proteins involved in nuclear transport, protein folding and ubiquitination associated with DNA repair. Mol Plant Pathol. 2010;11:663–75. doi: 10.1111/j.1364-3703.2010.00636.x 20696004
72. Zuo J, Niu QW, Chua NH. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 2000;24:265–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11069700 doi: 10.1046/j.1365-313x.2000.00868.x 11069700
73. Jia H, Wang N. Xcc-facilitated agroinfiltration of citrus leaves: a tool for rapid functional analysis of transgenes in citrus leaves. Plant Cell Rep. 2014;33:1993–2001. doi: 10.1007/s00299-014-1673-9 25146436
74. Teper D, Girija AM, Bosis E, Popov G, Savidor A, Sessa G. The Xanthomonas euvesicatoria type III effector XopAU is an active protein kinase that manipulates plant MAP kinase signaling. PLoS Pathog. 2018;14. doi: 10.1371/journal.ppat.1006880 29377937
75. Jia H, Liao M, Verbelen J-P, Vissenberg K. Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep. 2007;26:1961–5. doi: 10.1007/s00299-007-0403-y 17637995
76. Teper D, Zhang Y, Wang N. TfmR, a novel TetR-family transcriptional regulator, modulates the virulence of Xanthomonas citri in response to fatty acids. Mol Plant Pathol. 2019; doi: 10.1111/mpp.12786 30919570
77. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39:e82. doi: 10.1093/nar/gkr218 21493687
78. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.
Článek vyšel v časopise
PLOS Genetics
2021 Číslo 1
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- Impaired tumor immune response in metastatic tumors is a selective pressure for neutral evolution in CRC cases
- Identifying drug targets for neurological and psychiatric disease via genetics and the brain transcriptome
- Temperature regulates synaptic subcellular specificity mediated by inhibitory glutamate signaling
- Population structure of indigenous inhabitants of Arabia