Kinetochore-independent mechanisms of sister chromosome separation
Autoři:
Hannah Vicars aff001; Travis Karg aff001; Brandt Warecki aff001; Ian Bast aff001; William Sullivan aff001
Působiště autorů:
Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California, United States of America
aff001
Vyšlo v časopise:
Kinetochore-independent mechanisms of sister chromosome separation. PLoS Genet 17(1): e1009304. doi:10.1371/journal.pgen.1009304
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1009304
Souhrn
Although kinetochores normally play a key role in sister chromatid separation and segregation, chromosome fragments lacking kinetochores (acentrics) can in some cases separate and segregate successfully. In Drosophila neuroblasts, acentric chromosomes undergo delayed, but otherwise normal sister separation, revealing the existence of kinetochore- independent mechanisms driving sister chromosome separation. Bulk cohesin removal from the acentric is not delayed, suggesting factors other than cohesin are responsible for the delay in acentric sister separation. In contrast to intact kinetochore-bearing chromosomes, we discovered that acentrics align parallel as well as perpendicular to the mitotic spindle. In addition, sister acentrics undergo unconventional patterns of separation. For example, rather than the simultaneous separation of sisters, acentrics oriented parallel to the spindle often slide past one another toward opposing poles. To identify the mechanisms driving acentric separation, we screened 117 RNAi gene knockdowns for synthetic lethality with acentric chromosome fragments. In addition to well-established DNA repair and checkpoint mutants, this candidate screen identified synthetic lethality with X-chromosome-derived acentric fragments in knockdowns of Greatwall (cell cycle kinase), EB1 (microtubule plus-end tracking protein), and Map205 (microtubule-stabilizing protein). Additional image-based screening revealed that reductions in Topoisomerase II levels disrupted sister acentric separation. Intriguingly, live imaging revealed that knockdowns of EB1, Map205, and Greatwall preferentially disrupted the sliding mode of sister acentric separation. Based on our analysis of EB1 localization and knockdown phenotypes, we propose that in the absence of a kinetochore, microtubule plus-end dynamics provide the force to resolve DNA catenations required for sister separation.
Klíčová slova:
Anaphase – Chromatids – Larvae – Metaphase – Microtubules – Neuroblasts – RNA interference – Telomeres
Zdroje
1. Ermolaeva MA, Schumacher B. Systemic DNA damage responses: Organismal adaptations to genome instability. Trends Genet. 2014;30(3):95–102. doi: 10.1016/j.tig.2013.12.001 24439457; PubMed Central PMCID: PMC4248340.
2. Mikhailov A, Cole RW, Rieder CL. DNA Damage during Mitosis in Human Cells Delays the Metaphase/Anaphase Transition via the Spindle-Assembly Checkpoint. Current Biology. 2002;12(21):1797–806. doi: 10.1016/s0960-9822(02)01226-5 12419179
3. Royou A, Macias H, Sullivan W. The Drosophila Grp/Chk1 DNA Damage Checkpoint Controls Entry into Anaphase. Current Biology. 2005;15(4):334–9. doi: 10.1016/j.cub.2005.02.026 15723794.
4. Coutelier H, Xu Z. Adaptation in replicative senescence: a risky business. Curr Genet. 2019;65(3):711–6. doi: 10.1007/s00294-019-00933-7 30637477.
5. Kanda T, Wahl GM. The dynamics of acentric chromosomes in cancer cells revealed by GFP- based chromosome labeling strategies. J Cell Biochem Suppl. 2000; Suppl 35:107–14. doi: 10.1002/1097-4644(2000)79:35+<107::aid-jcb1133>3.0.co;2-y 11389539.
6. LaFountain JR, Oldenbourg R, Cole RW, Rieder CL. Microtubule Flux Mediates Poleward Motion of Acentric Chromosome Fragments during Meiosis in Insect Spermatocytes. Mol Biol Cell. 2001;12(12):4054–65. doi: 10.1091/mbc.12.12.4054 11739800; PubMed Central PMCID: PMC60775.
7. Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, et al. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 2011;26(1):125–32. doi: 10.1093/mutage/geq052 21164193
8. Bajer A. Cine-micrographic studies on chromosome movements in β-irradiated cell. Chromosoma. 1958;9:319–331. 13608834.
9. Liang H, Wright WH, Cheng S, He W, Berns MW. Micromanipulation of chromosomes in PTK2 cells using laser microsurgery (optical scalpel) in combination with laser-induced optical force (optical tweezers). Experimental cell research. 1993;204(1):110–20. doi: 10.1006/excr.1993.1015 8416789.
10. Khodjakov A, Cole RW, Bajer AS, Rieder CL. The force for poleward chromosome motion in Haemanthus cells acts along the length of the chromosome during metaphase but only at the kinetochore during anaphase. J Cell Biol. 1996;132(6):1093–104. doi: 10.1083/jcb.132.6.1093 8601587; PubMed Central PMCID: PMC2120764.
11. Kanda T, Sullivan KF, Wahl GM. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Current Biology. 1998;8(7):377–85. doi: 10.1016/s0960-9822(98)70156-3 9545195.
12. Royou A, Gagou ME, Karess R, Sullivan W. BubR1- and Polo-Coated DNA Tethers Facilitate Poleward Segregation of Acentric Chromatids. Cell. 2010;140(2):235–45. doi: 10.1016/j.cell.2009.12.043 20141837; PubMed Central PMCID: PMC2969851.
13. Bretscher HS, Fox DT. Proliferation of Double Strand Break Resistant Polyploid Cells Requires Drosophila FANCD2. Dev Cell. 2016;37(5):444–57. doi: 10.1016/j.devcel.2016.05.004 27270041; PubMed Central PMCID: PMC4901310.
14. Platero JS, Ahmad K, Henikoff S. A Distal Heterochromatic Block Displays Centromeric Activity When Detached from a Natural Centromere. Molecular Cell. 1999;4(6):995–1004. doi: 10.1016/s1097-2765(00)80228-2 10635324.
15. Karg T, Elting MW, Vicars H, Dumont S, Sullivan W. The chromokinesin Klp3a and microtubules facilitate acentric chromosome segregation. J Cell Biol. 2017;216(6):1597–608. doi: 10.1083/jcb.201604079 28500183; PubMed Central PMCID: PMC5461011.
16. Kanda T, Otter M, Wahl GM. Mitotic segregation of viral and cellular acentric extrachromosomal molecules by chromosome tethering. J Cell Sci. 2001; 114:49–58. 11112689.
17. Ishii K, Ogiyama Y, Chikashige Y, Soejima S, Masuda F, Kakuma T, et al. Heterochromatin Integrity Affects Chromosome Reorganization After Centromere Dysfunction. Science. 2008;321(5892):1088–91. doi: 10.1126/science.1158699 18719285.
18. Ohno Y, Ogiyama Y, Kubota Y, Kubo T, Ishii K. Acentric chromosome ends are prone to fusion with functional chromosome ends through a homology-directed rearrangement. Nucleic Acids Res. 2016;44(1):232–44. doi: 10.1093/nar/gkv997 26433224; PubMed Central PMCID: PMC4705696.
19. Rong YS, Titen SW, Xie HB, Golic MM, Bastiani M, Bandyopadhyay P, et al. Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 2002;16(12):1568–81. doi: 10.1101/gad.986602 12080094; PubMed Central PMCID: PMC186348.
20. Maggert KA, Golic KG. Highly Efficient Sex Chromosome Interchanges Produced By I-CreI Expression in Drosophila. Genetics. 2005;171(3):1103–14. doi: 10.1534/genetics.104.040071 16020774; PubMed Central PMCID: PMC1456814.
21. Paredes S, Maggert KA. Ribosomal DNA contributes to global chromatin regulation. Proc Natl Acad Sci U S A. 2009;106(42):17829–34. doi: 10.1073/pnas.0906811106 19822756; PubMed Central PMCID: PMC2764911.
22. Golic MM, Golic KG. A simple and rapid method for constructing ring-X chromosomes in Drosophila melanogaster. Chromosoma. 2011;120(2):159–64. doi: 10.1007/s00412-010-0297-2 21085980; PubMed Central PMCID: PMC4454366.
23. Warecki B, Sullivan W. Mechanisms driving acentric chromosome transmission. Chromosome Res. 2020;Online ahead of print. doi: 10.1007/s10577-020-09636-z 32712740.
24. Guacci V, Koshland D, Strunnikov A. A Direct Link between Sister Chromatid Cohesion and Chromosome Condensation Revealed through the Analysis of MCD1 in S. cerevisiae. Cell. 1997;91(1):47–57. doi: 10.1016/s0092-8674(01)80008-8 9335334; PubMed Central PMCID: PMC2670185.
25. Michaelis C, Ciosk R, Nasmyth K. Cohesins: Chromosomal Proteins that Prevent Premature Separation of Sister Chromatids. Cell. 1997;91(1):35–45. doi: 10.1016/s0092-8674(01)80007-6 9335333.
26. Uhlmann F, Lottspeich F, Nasmyth K. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature. 1999;400(6739):37–42. doi: 10.1038/21831 10403247.
27. Uhlmann F, Wernic D, Poupart M-A, Koonin EV, Nasmyth K. Cleavage of Cohesin by the CD Clan Protease Separin Triggers Anaphase in Yeast. Cell. 2000;103(3):375–86. doi: 10.1016/s0092-8674(00)00130-6 11081625
28. Oliveira RA, Hamilton RS, Pauli A, Davis I, Nasmyth K. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat Cell Biol. 2010;12(2):185–92. doi: 10.1038/ncb2018 20081838; PubMed Central PMCID: PMC3284228.
29. Gutiérrez-Caballero C, Cebollero LR, Pendás AM. Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends in Genetics. 2012;28(7):351–60. doi: 10.1016/j.tig.2012.03.003 22542109
30. Asbury CL. Anaphase A: Disassembling Microtubules Move Chromosomes toward Spindle Poles. Biology. 2017;6(1):15. doi: 10.3390/biology6010015 28218660; PubMed Central PMCID: PMC5372008.
31. Oliveira RA, Kotadia S, Tavares A, Mirkovic M, Bowlin K, Eichinger CS, et al. Centromere- Independent Accumulation of Cohesin at Ectopic Heterochromatin Sites Induces Chromosome Stretching during Anaphase. PLoS Biol. 2014;12(10):e1001962. doi: 10.1371/journal.pbio.1001962 25290697; PubMed Central PMCID: PMC4188515.
32. Urban E, Nagarkar-Jaiswal S, Lehner CF, Heidmann SK. The Cohesin Subunit Rad21 Is Required for Synaptonemal Complex Maintenance, but Not Sister Chromatid Cohesion, during Drosophila Female Meiosis. PLoS Genet. 2014;10(8):e1004540. doi: 10.1371/journal.pgen.1004540 25101996; PubMed Central PMCID: PMC4125089.
33. Cenci G, Siriaco G, Raffa GD, Kellum R, Gatti M. The Drosophila HOAP protein is required for telomere capping. Nat Cell Biol. 2003;5(1):82–4. doi: 10.1038/ncb902 12510197.
34. Staeva-Vieira E, Yoo S, Lehmann R. An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO J. 2003;22(21):5863–74. doi: 10.1093/emboj/cdg564 14592983; PubMed Central PMCID: PMC275421.
35. McVey M, Andersen SL, Broze Y, Sekelsky J. Multiple Functions of Drosophila BLM Helicase in Maintenance of Genome Stability. Genetics. 2007;176(4):1979–92. doi: 10.1534/genetics.106.070052 17507683; PubMed Central PMCID: PMC1950607.
36. Melnikova L, Biessmann H, Georgiev P. The Ku Protein Complex Is Involved in Length Regulation of Drosophila Telomeres. Genetics. 2005;170(1):221–35. doi: 10.1534/genetics.104.034538 15781709; PubMed Central PMCID: PMC1449706.
37. Oikemus SR, McGinnis N, Queiroz-Machado J, Tukachinsky H, Takada S, Sunkel CE, et al. Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev. 2004;18(15):1850–61. doi: 10.1101/gad.1202504 15256487; PubMed Central PMCID: PMC517405.
38. Moon W, Hazelrigg T. The Drosophila Microtubule-Associated Protein Mini Spindles Is Required for Cytoplasmic Microtubules in Oogenesis. Current Biology. 2004;14(21):1957–61. doi: 10.1016/j.cub.2004.10.023 15530399.
39. Saunders RDC, Avides M do C, Howard T, Gonzalez C, Glover DM. The Drosophila Gene abnormal spindle Encodes a Novel Microtubule-associated Protein That Associates with the Polar Regions of the Mitotic Spindle. J Cell Biol. 1997;137(4):881–90. doi: 10.1083/jcb.137.4.881 9151690; PubMed Central PMCID: PMC2139842.
40. Rogers SL, Rogers GC, Sharp DJ, Vale RD. Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J Cell Biol. 2002;158(5):873–84. doi: 10.1083/jcb.200202032 12213835; PubMed Central PMCID: PMC2173155.
41. Pesavento PA, Stewart RJ, Goldstein LS. Characterization of the KLP68D kinesin-like protein in Drosophila: possible roles in axonal transport. The Journal of Cell Biology. 1994;127(4):1041–8. doi: 10.1083/jcb.127.4.1041 7525600; PubMed Central PMCID: PMC2200055.
42. Archambault V, D’Avino PP, Deery MJ, Lilley KS, Glover DM. Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev. 2008;22(19):2707–20. doi: 10.1101/gad.486808 18832073; PubMed Central PMCID: PMC2559908.
43. Savvidou E, Cobbe N, Steffensen S, Cotterill S, Heck MMS. Drosophila CAP-D2 is required for condensin complex stability and resolution of sister chromatids. Journal of Cell Science. 2005;118(11):2529–43. doi: 10.1242/jcs.02392 15923665.
44. Stokes DG, Tartof KD, Perry RP. CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc Natl Acad Sci USA. 1996;93(14):7137–42. doi: 10.1073/pnas.93.14.7137 8692958; PubMed Central PMCID: PMC38949.
45. Feller C, Forné I, Imhof A, Becker PB. Global and Specific Responses of the Histone Acetylome to Systematic Perturbation. Molecular Cell. 2015;57(3):559–71. doi: 10.1016/j.molcel.2014.12.008 25578876.
46. Corona DFV, Eberharter A, Budde A, Deuring R, Ferrari S, Varga-Weisz P, et al. Two histone fold proteins, CHRAC-14 and CHRAC-16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC). EMBO J. 2000;19(12):3049–59. doi: 10.1093/emboj/19.12.3049 10856248; PubMed Central PMCID: PMC203371.
47. Eissenberg JC, Elgin SCR. HP1a: A Structural Chromosomal Protein Regulating Transcription. Trends Genet. 2014;30(3):103–10. doi: 10.1016/j.tig.2014.01.002 24555990; PubMed Central PMCID: PMC3991861.
48. Yu J, Fleming SL, Williams B, Williams EV, Li Z, Somma P, et al. Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila. J Cell Biol. 2004;164:487–492. doi: 10.1083/jcb.200310059 14970188; PubMed Central PMCID: PMC2171981.
49. O’Tousa J. Meiotic chromosome behavior influenced by mutation-altered disjunction in Drosophila melanogaster females. Genetics. 1982;102:503–524. 6816677; PubMed Central PMCID: PMC1201954.
50. Voets E, Wolthuis RMF. MASTL is the human orthologue of Greatwall kinase that facilitates mitotic entry, anaphase and cytokinesis. Cell Cycle. 2010;9(17):3591–601. doi: 10.4161/cc.9.17.12832 20818157.
51. Schuh M, Lehner CF, Heidmann S. Incorporation of Drosophila CID/CENP-A and CENP-C into centromeres during early embryonic anaphase. Curr Biol. 2007;17(3):237–243. doi: 10.1016/j.cub.2006.11.051 17222555.
52. Porter ACG, Farr CJ. Topoisomerase II: untangling its contribution at the centromere. Chromosome Res. 2004;12(6):569–83. doi: 10.1023/B:CHRO.0000036608.91085.d1 15289664.
53. Tirnauer JS, Bierer BE. EB1 proteins regulate microtubule dynamics, cell polarity, and chromosome stability. J Cell Biol. 2000;149(4):761–6. doi: 10.1083/jcb.149.4.761 10811817; PubMed Central PMCID: PMC2174556.
54. Vitre B, Coquelle FM, Heichette C, Garnier C, Chrétien D, Arnal I. EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat Cell Biol. 2008;10(4):415–21. doi: 10.1038/ncb1703 18364701.
55. Toyoda Y, Yanagida M. Coordinated Requirements of Human Topo II and Cohesin for Metaphase Centromere Alignment under Mad2-dependent Spindle Checkpoint Surveillance. Mol Biol Cell. 2006;17(5):2287–302. doi: 10.1091/mbc.e05-11-1089 16510521; PubMed Central PMCID: PMC1446084.
56. Murray AW, Szostak JW. Chromosome Segregation in Mitosis and Meiosis. Annual Review of Cell Biology. 1985;1(1):289–315. doi: 10.1146/annurev.cb.01.110185.001445 3916318.
57. Farcas A-M, Uluocak P, Helmhart W, Nasmyth K. Cohesin’s Concatenation of Sister DNAs Maintains Their Intertwining. Mol Cell. 2011;44(1–3):97–107. doi: 10.1016/j.molcel.2011.07.034 21981921; PubMed Central PMCID: PMC3240746.
58. Wang LH-C, Mayer B, Stemmann O, Nigg EA. Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division. Journal of Cell Science. 2010;123(5):806–13. doi: 10.1242/jcs.058255 20144989.
59. Kenney RD, Heald R. Essential roles for cohesin in kinetochore and spindle function in Xenopus egg extracts. Journal of Cell Science. 2006;119(24):5057–66. doi: 10.1242/jcs.03277 17158911.
60. Baxter J, Sen N, Martinez VL, De Carandini MEM, Schvartzman JB, Diffley JFX, et al. Positive Supercoiling of Mitotic DNA Drives Decatenation by Topoisomerase II in Eukaryotes. Science. 2011;331(6022):1328–32. doi: 10.1126/science.1201538 21393545.
61. Piskadlo E, Oliveira RA. A Topology-Centric View on Mitotic Chromosome Architecture. Int J Mol Sci. 2017;18(12):2751. doi: 10.3390/ijms18122751 29258269; PubMed Central PMCID: PMC5751350.
62. Nehlig A, Molina A, Rodrigues-Ferreira S, Honoré S, Nahmias C. Regulation of end-binding protein EB1 in the control of microtubule dynamics. Cell Mol Life Sci. 2017;74(13):2381–93. doi: 10.1007/s00018-017-2476-2 28204846.
63. Theurkauf WE, Hawley RS. Meiotic spindle assembly in Drosophila females: Behavior of nonexchange chromosomes and the effects of mutations in the nod kinesin-like protein. J Cell Biol. 1992;116:1167–1180. doi: 10.1083/jcb.116.5.1167 1740471; PubMed Central PMCID:PMC2289365.
64. Ye AA, Verma V, Maresca TJ. NOD is a plus end–directed motor that binds EB1 via a new microtubule tip localization sequence. J Cell Biol. 2018;217(9):3007–17. doi: 10.1083/jcb.201708109 29899040; PubMed Central PMCID: PMC6122986.
65. Afshar K, Barton NR, Hawley RS, Goldstein LSB. DNA binding and meiotic chromosomal localization of the Drosophila nod kinesin-like protein. Cell. 1995;81:129–138. doi: 10.1016/0092-8674(95)90377-1 7720068.
66. Karg T, Warecki B, Sullivan W. Aurora B–mediated localized delays in nuclear envelope formation facilitate inclusion of late-segregating chromosome fragments. Mol Biol Cell. 2015;26(12):2227–41. doi: 10.1091/mbc.E15-01-0026 25877868; PubMed Central PMCID: PMC4462941.
67. Warecki B, Sullivan W. Micronuclei formation is prevented by Aurora B-mediated exclusion of HP1a from late-segregating chromatin in Drosophila. Genetics. 2018;210(1):171–187. doi: 10.1534/genetics.118.301031 29986897; PubMed Central PMCID: PMC6116970.
68. Warecki B, Ling X, Bast I, Sullivan W. ESCRT-III–mediated membrane fusion drives chromosome fragments through nuclear envelope channels. Journal of Cell Biology. 2020;219(3):e201905091. doi: 10.1083/jcb.201905091 32032426; PubMed Central PMCID: PMC7054997.
69. Laband K, Le Borgne R, Edwards F, Stefanutti M, Canman JC, Verbavatz JM, et al. Chromosome segregation occurs by microtubule pushing in oocytes. Nature Comm. 2017;8(1):1499. doi: 10.1038/s41467-017-01539-8 29133801; PubMed Central PMCID: PMC5684144.
70. Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A, et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature. 1996;382(6590):420–5. doi: 10.1038/382420a0 8684481.
71. Fuge H. Non-kinetochore transport phenomena, microtubule-chromosome associations, and force transmission in nuclear division. Protoplasma. 1990;158:1–9.
72. Royou A, McCusker D, Kellogg DR, Sullivan W. Grapes (Chk1) prevents nuclear CDK1 activation by delaying cyclin B nuclear accumulation. J Cell Biol. 2008;183(1):63–75. doi: 10.1083/jcb.200801153 18824564; PubMed Central PMCID: PMC2557043.
Článek vyšel v časopise
PLOS Genetics
2021 Číslo 1
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- Impaired tumor immune response in metastatic tumors is a selective pressure for neutral evolution in CRC cases
- Identifying drug targets for neurological and psychiatric disease via genetics and the brain transcriptome
- Temperature regulates synaptic subcellular specificity mediated by inhibitory glutamate signaling
- Population structure of indigenous inhabitants of Arabia