Unraveling the functional role of the orphan solute carrier, SLC22A24 in the transport of steroid conjugates through metabolomic and genome-wide association studies
Autoři:
Sook Wah Yee aff001; Adrian Stecula aff001; Huan-Chieh Chien aff001; Ling Zou aff001; Elena V. Feofanova aff002; Marjolein van Borselen aff001; Kit Wun Kathy Cheung aff001; Noha A. Yousri aff003; Karsten Suhre aff005; Jason M. Kinchen aff006; Eric Boerwinkle aff002; Roshanak Irannejad aff008; Bing Yu aff002; Kathleen M. Giacomini aff001
Působiště autorů:
Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, California, United States of America
aff001; Human Genetics Center, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
aff002; Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
aff003; Computer and Systems Engineering, Alexandria University, Alexandria, Egypt
aff004; Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
aff005; Metabolon, Inc, Durham, United States of America
aff006; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
aff007; The Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
aff008; Institute for Human Genetics, University of California San Francisco, California, United States of America
aff009
Vyšlo v časopise:
Unraveling the functional role of the orphan solute carrier, SLC22A24 in the transport of steroid conjugates through metabolomic and genome-wide association studies. PLoS Genet 15(9): e32767. doi:10.1371/journal.pgen.1008208
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008208
Souhrn
Variation in steroid hormone levels has wide implications for health and disease. The genes encoding the proteins involved in steroid disposition represent key determinants of interindividual variation in steroid levels and ultimately, their effects. Beginning with metabolomic data from genome-wide association studies (GWAS), we observed that genetic variants in the orphan transporter, SLC22A24 were significantly associated with levels of androsterone glucuronide and etiocholanolone glucuronide (sentinel SNPs p-value <1x10-30). In cells over-expressing human or various mammalian orthologs of SLC22A24, we showed that steroid conjugates and bile acids were substrates of the transporter. Phylogenetic, genomic, and transcriptomic analyses suggested that SLC22A24 has a specialized role in the kidney and appears to function in the reabsorption of organic anions, and in particular, anionic steroids. Phenome-wide analysis showed that functional variants of SLC22A24 are associated with human disease such as cardiovascular diseases and acne, which have been linked to dysregulated steroid metabolism. Collectively, these functional genomic studies reveal a previously uncharacterized protein involved in steroid homeostasis, opening up new possibilities for SLC22A24 as a pharmacological target for regulating steroid levels.
Klíčová slova:
Drug metabolism – Genome-wide association studies – Kidneys – Membrane proteins – Metabolomics – Steroids – Sulfates – Anions
Zdroje
1. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151. Epub 2010/11/06. doi: 10.1210/er.2010-0013 21051590.
2. Chen Z, Tao S, Gao Y, Zhang J, Hu Y, Mo L, et al. Genome-wide association study of sex hormones, gonadotropins and sex hormone-binding protein in Chinese men. J Med Genet. 2013;50(12):794–801. Epub 2013/09/21. doi: 10.1136/jmedgenet-2013-101705 24049095.
3. Coviello AD, Haring R, Wellons M, Vaidya D, Lehtimaki T, Keildson S, et al. A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation. PLoS Genet. 2012;8(7):e1002805. Epub 2012/07/26. doi: 10.1371/journal.pgen.1002805 22829776.
4. Ohlsson C, Wallaschofski H, Lunetta KL, Stolk L, Perry JR, Koster A, et al. Genetic determinants of serum testosterone concentrations in men. PLoS Genet. 2011;7(10):e1002313. Epub 2011/10/15. doi: 10.1371/journal.pgen.1002313 21998597.
5. Prescott J, Thompson DJ, Kraft P, Chanock SJ, Audley T, Brown J, et al. Genome-wide association study of circulating estradiol, testosterone, and sex hormone-binding globulin in postmenopausal women. PLoS One. 2012;7(6):e37815. Epub 2012/06/08. doi: 10.1371/journal.pone.0037815 22675492.
6. Ruth KS, Campbell PJ, Chew S, Lim EM, Hadlow N, Stuckey BG, et al. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes. Eur J Hum Genet. 2016;24(2):284–90. Epub 2015/05/28. doi: 10.1038/ejhg.2015.102 26014426.
7. Dudenkov TM, Ingle JN, Buzdar AU, Robson ME, Kubo M, Ibrahim-Zada I, et al. SLCO1B1 polymorphisms and plasma estrone conjugates in postmenopausal women with ER+ breast cancer: genome-wide association studies of the estrone pathway. Breast Cancer Res Treat. 2017;164(1):189–99. Epub 2017/04/22. doi: 10.1007/s10549-017-4243-3 28429243.
8. Long T, Hicks M, Yu HC, Biggs WH, Kirkness EF, Menni C, et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat Genet. 2017;49(4):568–78. Epub 2017/03/07. doi: 10.1038/ng.3809 28263315.
9. Yousri NA, Fakhro KA, Robay A, Rodriguez-Flores JL, Mohney RP, Zeriri H, et al. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population. Nat Commun. 2018;9(1):333. Epub 2018/01/25. doi: 10.1038/s41467-017-01972-9 29362361.
10. Perland E, Fredriksson R. Classification Systems of Secondary Active Transporters. Trends Pharmacol Sci. 2017;38(3):305–15. Epub 2016/12/13. doi: 10.1016/j.tips.2016.11.008 27939446.
11. Cesar-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, et al. A Call for Systematic Research on Solute Carriers. Cell. 2015;162(3):478–87. Epub 2015/08/02. doi: 10.1016/j.cell.2015.07.022 26232220.
12. Lin L, Yee SW, Kim RB, Giacomini KM. SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov. 2015;14(8):543–60. Epub 2015/06/27. doi: 10.1038/nrd4626 26111766.
13. Bai X, Moraes TF, Reithmeier RAF. Structural biology of solute carrier (SLC) membrane transport proteins. Mol Membr Biol. 2017;34(1–2):1–32. Epub 2018/04/14. doi: 10.1080/09687688.2018.1448123 29651895.
14. Pelis RM, Wright SH. SLC22, SLC44, and SLC47 transporters—organic anion and cation transporters: molecular and cellular properties. Curr Top Membr. 2014;73:233–61. Epub 2014/04/22. doi: 10.1016/B978-0-12-800223-0.00006-2 24745985.
15. Zhang L, Dresser MJ, Gray AT, Yost SC, Terashita S, Giacomini KM. Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol. 1997;51(6):913–21. Epub 1997/06/01. doi: 10.1124/mol.51.6.913 9187257.
16. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, et al. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 1997;16(7):871–81. Epub 1997/07/01. doi: 10.1089/dna.1997.16.871 9260930.
17. International Transporter C, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36. Epub 2010/03/02. doi: 10.1038/nrd3028 20190787.
18. Wright SH. Role of organic cation transporters in the renal handling of therapeutic agents and xenobiotics. Toxicol Appl Pharmacol. 2005;204(3):309–19. Epub 2005/04/23. doi: 10.1016/j.taap.2004.10.021 15845420.
19. Zhu C, Nigam KB, Date RC, Bush KT, Springer SA, Saier MH Jr., et al. Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs. PLoS One. 2015;10(11):e0140569. Epub 2015/11/05. doi: 10.1371/journal.pone.0140569 26536134.
20. Koepsell H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol Aspects Med. 2013;34(2–3):413–35. Epub 2013/03/20. doi: 10.1016/j.mam.2012.10.010 23506881.
21. Hediger MA, Clemencon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Aspects Med. 2013;34(2–3):95–107. Epub 2013/03/20. doi: 10.1016/j.mam.2012.12.009 23506860.
22. Li S, Sanna S, Maschio A, Busonero F, Usala G, Mulas A, et al. The GLUT9 gene is associated with serum uric acid levels in Sardinia and Chianti cohorts. PLoS Genet. 2007;3(11):e194. Epub 2007/11/14. doi: 10.1371/journal.pgen.0030194 17997608.
23. Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a newly identified urate transporter influencing serum urate concentration, urate excretion and gout. Nat Genet. 2008;40(4):437–42. Epub 2008/03/11. doi: 10.1038/ng.106 18327257.
24. Suhre K, Shin SY, Petersen AK, Mohney RP, Meredith D, Wagele B, et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature. 2011;477(7362):54–60. Epub 2011/09/03. doi: 10.1038/nature10354 21886157.
25. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46(6):543–50. Epub 2014/05/13. doi: 10.1038/ng.2982 24816252.
26. Yee SW, Giacomini MM, Hsueh CH, Weitz D, Liang X, Goswami S, et al. Metabolomic and Genome-wide Association Studies Reveal Potential Endogenous Biomarkers for OATP1B1. Clin Pharmacol Ther. 2016;100(5):524–36. Epub 2016/07/23. doi: 10.1002/cpt.434 27447836.
27. Machiela MJ, Chanock SJ. LDassoc: an online tool for interactively exploring genome-wide association study results and prioritizing variants for functional investigation. Bioinformatics. 2018;34(5):887–9. Epub 2017/10/03. doi: 10.1093/bioinformatics/btx561 28968746.
28. Gillies CE, Putler R, Menon R, Otto E, Yasutake K, Nair V, et al. An eQTL Landscape of Kidney Tissue in Human Nephrotic Syndrome. Am J Hum Genet. 2018;103(2):232–44. Epub 2018/07/31. doi: 10.1016/j.ajhg.2018.07.004 30057032.
29. Qiu C, Huang S, Park J, Park Y, Ko YA, Seasock MJ, et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat Med. 2018;24(11):1721–31. Epub 2018/10/03. doi: 10.1038/s41591-018-0194-4 30275566.
30. Ko YA, Yi H, Qiu C, Huang S, Park J, Ledo N, et al. Genetic-Variation-Driven Gene-Expression Changes Highlight Genes with Important Functions for Kidney Disease. Am J Hum Genet. 2017;100(6):940–53. Epub 2017/06/03. doi: 10.1016/j.ajhg.2017.05.004 28575649.
31. Chen L, Shu Y, Liang X, Chen EC, Yee SW, Zur AA, et al. OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin. Proc Natl Acad Sci U S A. 2014;111(27):9983–8. Epub 2014/06/26. doi: 10.1073/pnas.1314939111 24961373.
32. Rusu V, Hoch E, Mercader JM, Tenen DE, Gymrek M, Hartigan CR, et al. Type 2 Diabetes Variants Disrupt Function of SLC16A11 through Two Distinct Mechanisms. Cell. 2017;170(1):199–212 e20. Epub 2017/07/01. doi: 10.1016/j.cell.2017.06.011 28666119.
33. Masuo Y, Ohba Y, Yamada K, Al-Shammari AH, Seba N, Nakamichi N, et al. Combination Metabolomics Approach for Identifying Endogenous Substrates of Carnitine/Organic Cation Transporter OCTN1. Pharm Res. 2018;35(11):224. Epub 2018/10/04. doi: 10.1007/s11095-018-2507-1 30280275.
34. Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics. 2007;3(3):211–21. Epub 2007/09/01. doi: 10.1007/s11306-007-0082-2 24039616.
35. Kim HI, Raffler J, Lu W, Lee JJ, Abbey D, Saleheen D, et al. Fine Mapping and Functional Analysis Reveal a Role of SLC22A1 in Acylcarnitine Transport. Am J Hum Genet. 2017;101(4):489–502. Epub 2017/09/26. doi: 10.1016/j.ajhg.2017.08.008 28942964.
36. Price PJ, Gregory EA. Relationship between in vitro growth promotion and biophysical and biochemical properties of the serum supplement. In Vitro. 1982;18(6):576–84. Epub 1982/06/01. 7118138.
37. Hagos Y, Stein D, Ugele B, Burckhardt G, Bahn A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007;18(2):430–9. Epub 2007/01/19. doi: 10.1681/ASN.2006040415 17229912.
38. Zou L, Stecula A, Gupta A, Prasad B, Chien HC, Yee SW, et al. Molecular Mechanisms for Species Differences in Organic Anion Transporter 1, OAT1: Implications for Renal Drug Toxicity. Mol Pharmacol. 2018;94(1):689–99. Epub 2018/05/04. doi: 10.1124/mol.117.111153 29720497.
39. Rizwan AN, Krick W, Burckhardt G. The chloride dependence of the human organic anion transporter 1 (hOAT1) is blunted by mutation of a single amino acid. J Biol Chem. 2007;282(18):13402–9. Epub 2007/03/14. doi: 10.1074/jbc.M609849200 17353191.
40. Sahlin S, Ahlberg J, Reihner E, Stahlberg D, Einarsson K. Cholesterol metabolism in human gallbladder mucosa: relationship to cholesterol gallstone disease and effects of chenodeoxycholic acid and ursodeoxycholic acid treatment. Hepatology. 1992;16(2):320–6. Epub 1992/08/01. doi: 10.1002/hep.1840160207 1639340.
41. Sarenac TM, Mikov M. Bile Acid Synthesis: From Nature to the Chemical Modification and Synthesis and Their Applications as Drugs and Nutrients. Front Pharmacol. 2018;9:939. Epub 2018/10/16. doi: 10.3389/fphar.2018.00939 30319399.
42. Choi MH, Kim KR, Chung BC. Simultaneous determination of urinary androgen glucuronides by high temperature gas chromatography-mass spectrometry with selected ion monitoring. Steroids. 2000;65(1):54–9. Epub 2000/01/07. doi: 10.1016/s0039-128x(99)00082-3 10624837.
43. Strahm E, Kohler I, Rudaz S, Martel S, Carrupt PA, Veuthey JL, et al. Isolation and quantification by high-performance liquid chromatography-ion-trap mass spectrometry of androgen sulfoconjugates in human urine. J Chromatogr A. 2008;1196–1197:153–60. Epub 2008/05/27. doi: 10.1016/j.chroma.2008.04.066 18501914.
44. Wu W, Baker ME, Eraly SA, Bush KT, Nigam SK. Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members. Physiol Genomics. 2009;38(2):116–24. Epub 2009/05/07. doi: 10.1152/physiolgenomics.90309.2008 19417012.
45. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46(D1):D754–D61. Epub 2017/11/21. doi: 10.1093/nar/gkx1098 29155950.
46. Ensembl Release 95. Gene: SLC22A24 Orthologues. 2019.
47. National Center for Biotechnology Information. Slc22a24 solute carrier family 22, member 24 [Rattus norvegicus (Norway rat)] 2018 [cited 2018]. https://www.ncbi.nlm.nih.gov/gene?term=(slc22a24[gene])%20AND%20(Rattus%20norvegicus[orgn])%20AND%20alive[prop]%20NOT%20newentry[gene]&sort=weight.
48. Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, et al. An integrated map of structural variation in 2,504 human genomes. Nature. 2015;526(7571):75–81. Epub 2015/10/04. doi: 10.1038/nature15394 26432246.
49. Wu H, Uchimura K, Donnelly EL, Kirita Y, Morris SA, Humphreys BD. Comparative Analysis and Refinement of Human PSC-Derived Kidney Organoid Differentiation with Single-Cell Transcriptomics. Cell Stem Cell. 2018;23(6):869–81 e8. Epub 2018/11/20. doi: 10.1016/j.stem.2018.10.010 30449713.
50. Chang CY, Picotti P, Huttenhain R, Heinzelmann-Schwarz V, Jovanovic M, Aebersold R, et al. Protein significance analysis in selected reaction monitoring (SRM) measurements. Mol Cell Proteomics. 2012;11(4):M111 014662. Epub 2011/12/23. doi: 10.1074/mcp.M111.014662 22190732.
51. Wu H, Malone AF, Donnelly EL, Kirita Y, Uchimura K, Ramakrishnan SM, et al. Single-Cell Transcriptomics of a Human Kidney Allograft Biopsy Specimen Defines a Diverse Inflammatory Response. J Am Soc Nephrol. 2018;29(8):2069–80. Epub 2018/07/08. doi: 10.1681/ASN.2018020125 29980650.
52. Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123. Epub 2014/12/30. doi: 10.1152/physrev.00025.2013 25540139.
53. Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D, Trudeau VL, Nicolau JC, et al. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci. 2018;12:84. Epub 2018/03/09. doi: 10.3389/fnins.2018.00084 29515356.
54. Hammes SR, Levin ER. Impact of estrogens in males and androgens in females. J Clin Invest. 2019;129(5):1818–26. Epub 2019/05/02. doi: 10.1172/JCI125755 31042159.
55. Jin G, Sun J, Kim ST, Feng J, Wang Z, Tao S, et al. Genome-wide association study identifies a new locus JMJD1C at 10q21 that may influence serum androgen levels in men. Hum Mol Genet. 2012;21(23):5222–8. Epub 2012/09/01. doi: 10.1093/hmg/dds361 22936694.
56. Cropp CD, Komori T, Shima JE, Urban TJ, Yee SW, More SS, et al. Organic anion transporter 2 (SLC22A7) is a facilitative transporter of cGMP. Mol Pharmacol. 2008;73(4):1151–8. Epub 2008/01/25. doi: 10.1124/mol.107.043117 18216183.
57. Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–52. Epub 2002/05/25. doi: 10.1038/nature742 12024214.
58. Skwara P, Schomig E, Grundemann D. A novel mode of operation of SLC22A11: Membrane insertion of estrone sulfate versus translocation of uric acid and glutamate. Biochem Pharmacol. 2017;128:74–82. Epub 2016/12/29. doi: 10.1016/j.bcp.2016.12.020 28027879.
59. Sweet DH, Chan LM, Walden R, Yang XP, Miller DS, Pritchard JB. Organic anion transporter 3 (Slc22a8) is a dicarboxylate exchanger indirectly coupled to the Na+ gradient. Am J Physiol Renal Physiol. 2003;284(4):F763–9. Epub 2002/12/19. doi: 10.1152/ajprenal.00405.2002 12488248.
60. Zhang X, Groves CE, Bahn A, Barendt WM, Prado MD, Rodiger M, et al. Relative contribution of OAT and OCT transporters to organic electrolyte transport in rabbit proximal tubule. Am J Physiol Renal Physiol. 2004;287(5):F999–1010. Epub 2004/07/15. doi: 10.1152/ajprenal.00156.2004 15251863.
61. Anzai N, Jutabha P, Enomoto A, Yokoyama H, Nonoguchi H, Hirata T, et al. Functional characterization of rat organic anion transporter 5 (Slc22a19) at the apical membrane of renal proximal tubules. J Pharmacol Exp Ther. 2005;315(2):534–44. Epub 2005/08/05. doi: 10.1124/jpet.105.088583 16079298.
62. Schomig E, Spitzenberger F, Engelhardt M, Martel F, Ording N, Grundemann D. Molecular cloning and characterization of two novel transport proteins from rat kidney. FEBS Lett. 1998;425(1):79–86. Epub 1998/04/16. doi: 10.1016/s0014-5793(98)00203-8 9541011.
63. Yokoyama H, Anzai N, Ljubojevic M, Ohtsu N, Sakata T, Miyazaki H, et al. Functional and immunochemical characterization of a novel organic anion transporter Oat8 (Slc22a9) in rat renal collecting duct. Cell Physiol Biochem. 2008;21(4):269–78. Epub 2008/04/29. doi: 10.1159/000129385 18441515.
64. Youngblood GL, Sweet DH. Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney. Am J Physiol Renal Physiol. 2004;287(2):F236–44. Epub 2004/04/08. doi: 10.1152/ajprenal.00012.2004 15068970.
65. Kwak JO, Kim HW, Oh KJ, Ko CB, Park H, Cha SH. Characterization of mouse organic anion transporter 5 as a renal steroid sulfate transporter. J Steroid Biochem Mol Biol. 2005;97(4):369–75. Epub 2005/09/10. doi: 10.1016/j.jsbmb.2005.06.028 16150593.
66. Breljak D, Ljubojevic M, Balen D, Zlender V, Brzica H, Micek V, et al. Renal expression of organic anion transporter Oat5 in rats and mice exhibits the female-dominant sex differences. Histol Histopathol. 2010;25(11):1385–402. Epub 2010/09/25. doi: 10.14670/HH-25.1385 20865662.
67. Tsuchida H, Anzai N, Shin HJ, Wempe MF, Jutabha P, Enomoto A, et al. Identification of a novel organic anion transporter mediating carnitine transport in mouse liver and kidney. Cell Physiol Biochem. 2010;25(4–5):511–22. Epub 2010/03/25. doi: 10.1159/000303060 20332632.
68. Liang Q, Xu W, Hong Q, Xiao C, Yang L, Ma Z, et al. Rapid comparison of metabolites in humans and rats of different sexes using untargeted UPLC-TOFMS and an in-house software platform. Eur J Mass Spectrom (Chichester). 2015;21(6):801–21. Epub 2016/01/15. doi: 10.1255/ejms.1395 26764310.
69. Guillemette C, Hum DW, Belanger A. Levels of plasma C19 steroids and 5 alpha-reduced C19 steroid glucuronides in primates, rodents, and domestic animals. Am J Physiol. 1996;271(2 Pt 1):E348–53. Epub 1996/08/01. doi: 10.1152/ajpendo.1996.271.2.E348 8770030.
70. Uhlen M, Hallstrom BM, Lindskog C, Mardinoglu A, Ponten F, Nielsen J. Transcriptomics resources of human tissues and organs. Mol Syst Biol. 2016;12(4):862. Epub 2016/04/06. doi: 10.15252/msb.20155865 27044256.
71. de Manuel M, Kuhlwilm M, Frandsen P, Sousa VC, Desai T, Prado-Martinez J, et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science. 2016;354(6311):477–81. Epub 2016/10/30. doi: 10.1126/science.aag2602 27789843.
72. Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science. 2010;328(5979):710–22. Epub 2010/05/08. doi: 10.1126/science.1188021 20448178.
73. Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338(6104):222–6. Epub 2012/09/01. doi: 10.1126/science.1224344 22936568.
74. Russel FG, Masereeuw R, van Aubel RA. Molecular aspects of renal anionic drug transport. Annu Rev Physiol. 2002;64:563–94. Epub 2002/02/05. doi: 10.1146/annurev.physiol.64.081501.155913 11826280.
75. Sekine T, Miyazaki H, Endou H. Molecular physiology of renal organic anion transporters. Am J Physiol Renal Physiol. 2006;290(2):F251–61. Epub 2006/01/13. doi: 10.1152/ajprenal.00439.2004 16403838.
76. Li CY, Basit A, Gupta A, Gaborik Z, Kis E, Prasad B. Major glucuronide metabolites of testosterone are primarily transported by MRP2 and MRP3 in human liver, intestine and kidney. J Steroid Biochem Mol Biol. 2019. Epub 2019/04/09. doi: 10.1016/j.jsbmb.2019.03.027 30959153.
77. Agopian AJ, Mitchell LE, Glessner J, Bhalla AD, Sewda A, Hakonarson H, et al. Genome-wide association study of maternal and inherited loci for conotruncal heart defects. PLoS One. 2014;9(5):e96057. Epub 2014/05/08. doi: 10.1371/journal.pone.0096057 24800985.
78. Guo W, Bachman E, Li M, Roy CN, Blusztajn J, Wong S, et al. Testosterone administration inhibits hepcidin transcription and is associated with increased iron incorporation into red blood cells. Aging Cell. 2013;12(2):280–91. Epub 2013/02/13. doi: 10.1111/acel.12052 23399021.
79. Pergialiotis V, Trakakis E, Parthenis C, Hatziagelaki E, Chrelias C, Thomakos N, et al. Correlation of platelet to lymphocyte and neutrophil to lymphocyte ratio with hormonal and metabolic parameters in women with PCOS. Horm Mol Biol Clin Investig. 2018;34(3). Epub 2018/04/26. doi: 10.1515/hmbci-2017-0073 29694329.
80. Bachman E, Travison TG, Basaria S, Davda MN, Guo W, Li M, et al. Testosterone induces erythrocytosis via increased erythropoietin and suppressed hepcidin: evidence for a new erythropoietin/hemoglobin set point. J Gerontol A Biol Sci Med Sci. 2014;69(6):725–35. Epub 2013/10/26. doi: 10.1093/gerona/glt154 24158761.
81. Nowak K, Jablonska E, Ratajczak-Wrona W. Neutrophils life under estrogenic and xenoestrogenic control. J Steroid Biochem Mol Biol. 2019;186:203–11. Epub 2018/11/02. doi: 10.1016/j.jsbmb.2018.10.015 30381249.
82. Brochu M, Belanger A, Tremblay RR. Plasma levels of C-19 steroids and 5 alpha-reduced steroid glucuronides in hyperandrogenic and idiopathic hirsute women. Fertil Steril. 1987;48(6):948–53. Epub 1987/12/01. doi: 10.1016/s0015-0282(16)59589-2 2960564.
83. Carmina E, Godwin AJ, Stanczyk FZ, Lippman JS, Lobo RA. The association of serum androsterone glucuronide with inflammatory lesions in women with adult acne. J Endocrinol Invest. 2002;25(9):765–8. Epub 2002/10/26. doi: 10.1007/BF03345509 12398233.
84. Carmina E, Lobo RA. Evidence for increased androsterone metabolism in some normoandrogenic women with acne. J Clin Endocrinol Metab. 1993;76(5):1111–4. Epub 1993/05/01. doi: 10.1210/jcem.76.5.8496299 8496299.
85. Carmina E, Stanczyk FZ, Matteri RK, Lobo RA. Serum androsterone conjugates differentiate between acne and hirsutism in hyperandrogenic women. Fertil Steril. 1991;55(5):872–6. Epub 1991/05/01. 1827073.
86. Rocha M, Cardozo KHM, Carvalho VM, Bagatin E. ADT-G as a promising biomarker for peripheral hyperandrogenism in adult female acne. Dermatoendocrinol. 2017;9(1):e1361571. Epub 2018/03/03. doi: 10.1080/19381980.2017.1361571 29497466.
87. Thompson DL, Horton N, Rittmaster RS. Androsterone glucuronide is a marker of adrenal hyperandrogenism in hirsute women. Clin Endocrinol (Oxf). 1990;32(3):283–92. Epub 1990/03/01. doi: 10.1111/j.1365-2265.1990.tb00868.x 2160872.
88. Accessible from Neale Lab. Imputed genotypes from HRC plus UK10K & 1000 Genomes reference panels as released by UK Biobank in March 2018 2018 [cited 2018 11/25/2018]. http://www.nealelab.is/uk-biobank/.
89. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol. 1989;129(4):687–702. Epub 1989/04/01. 2646917.
90. Yu B, Heiss G, Alexander D, Grams ME, Boerwinkle E. Associations Between the Serum Metabolome and All-Cause Mortality Among African Americans in the Atherosclerosis Risk in Communities (ARIC) Study. Am J Epidemiol. 2016;183(7):650–6. Epub 2016/03/10. doi: 10.1093/aje/kwv213 26956554.
91. Yu B, Zheng Y, Alexander D, Morrison AC, Coresh J, Boerwinkle E. Genetic determinants influencing human serum metabolome among African Americans. PLoS Genet. 2014;10(3):e1004212. Epub 2014/03/15. doi: 10.1371/journal.pgen.1004212 24625756.
92. Yu B, de Vries PS, Metcalf GA, Wang Z, Feofanova EV, Liu X, et al. Whole genome sequence analysis of serum amino acid levels. Genome Biol. 2016;17(1):237. Epub 2016/11/26. doi: 10.1186/s13059-016-1106-x 27884205.
93. Yu B, Li AH, Metcalf GA, Muzny DM, Morrison AC, White S, et al. Loss-of-function variants influence the human serum metabolome. Sci Adv. 2016;2(8):e1600800. Epub 2016/09/08. doi: 10.1126/sciadv.1600800 27602404.
94. Stecula A, Schlessinger A, Giacomini KM, Sali A. Human Concentrative Nucleoside Transporter 3 (hCNT3, SLC28A3) Forms a Cyclic Homotrimer. Biochemistry. 2017;56(27):3475–83. Epub 2017/07/01. doi: 10.1021/acs.biochem.7b00339 28661652.
95. Shima JE, Komori T, Taylor TR, Stryke D, Kawamoto M, Johns SJ, et al. Genetic variants of human organic anion transporter 4 demonstrate altered transport of endogenous substrates. Am J Physiol Renal Physiol. 2010;299(4):F767–75. Epub 2010/07/30. doi: 10.1152/ajprenal.00312.2010 20668102.
96. Urban TJ, Gallagher RC, Brown C, Castro RA, Lagpacan LL, Brett CM, et al. Functional genetic diversity in the high-affinity carnitine transporter OCTN2 (SLC22A5). Mol Pharmacol. 2006;70(5):1602–11. Epub 2006/08/26. doi: 10.1124/mol.106.028126 16931768.
97. Urban TJ, Brown C, Castro RA, Shah N, Mercer R, Huang Y, et al. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther. 2008;83(3):416–21. Epub 2007/07/05. doi: 10.1038/sj.clpt.6100271 17609685.
98. Yee SW, Nguyen AN, Brown C, Savic RM, Zhang Y, Castro RA, et al. Reduced renal clearance of cefotaxime in asians with a low-frequency polymorphism of OAT3 (SLC22A8). J Pharm Sci. 2013;102(9):3451–7. Epub 2013/05/08. doi: 10.1002/jps.23581 23649425.
99. Chen J, Terada T, Ogasawara K, Katsura T, Inui K. Adaptive responses of renal organic anion transporter 3 (OAT3) during cholestasis. Am J Physiol Renal Physiol. 2008;295(1):F247–52. Epub 2008/05/16. doi: 10.1152/ajprenal.00139.2008 18480179.
100. Chen EC, Khuri N, Liang X, Stecula A, Chien HC, Yee SW, et al. Discovery of Competitive and Noncompetitive Ligands of the Organic Cation Transporter 1 (OCT1; SLC22A1). J Med Chem. 2017;60(7):2685–96. Epub 2017/02/24. doi: 10.1021/acs.jmedchem.6b01317 28230985.
101. Khuri N, Zur AA, Wittwer MB, Lin L, Yee SW, Sali A, et al. Computational Discovery and Experimental Validation of Inhibitors of the Human Intestinal Transporter OATP2B1. J Chem Inf Model. 2017;57(6):1402–13. Epub 2017/06/01. doi: 10.1021/acs.jcim.6b00720 28562037.
102. Irannejad R, Pessino V, Mika D, Huang B, Wedegaertner PB, Conti M, et al. Functional selectivity of GPCR-directed drug action through location bias. Nat Chem Biol. 2017;13(7):799–806. Epub 2017/05/30. doi: 10.1038/nchembio.2389 28553949.
103. Irannejad R, Tomshine JC, Tomshine JR, Chevalier M, Mahoney JP, Steyaert J, et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature. 2013;495(7442):534–8. Epub 2013/03/22. doi: 10.1038/nature12000 23515162.
104. Tian X, Irannejad R, Bowman SL, Du Y, Puthenveedu MA, von Zastrow M, et al. The alpha-Arrestin ARRDC3 Regulates the Endosomal Residence Time and Intracellular Signaling of the beta2-Adrenergic Receptor. J Biol Chem. 2016;291(28):14510–25. Epub 2016/05/27. doi: 10.1074/jbc.M116.716589 27226565.
105. Dehaven CD, Evans AM, Dai H, Lawton KA. Organization of GC/MS and LC/MS metabolomics data into chemical libraries. J Cheminform. 2010;2(1):9. Epub 2010/10/20. doi: 10.1186/1758-2946-2-9 20955607.
106. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. Epub 2004/03/23. doi: 10.1093/nar/gkh340 15034147.
107. Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees 2010. http://www.phylo.org/sub_sections/portal/sc2010_paper.pdf.
108. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. Epub 2014/01/24. doi: 10.1093/bioinformatics/btu033 24451623.
109. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61(6):1061–7. Epub 2012/07/12. doi: 10.1093/sysbio/sys062 22780991.
110. Deng D, Sun P, Yan C, Ke M, Jiang X, Xiong L, et al. Molecular basis of ligand recognition and transport by glucose transporters. Nature. 2015;526(7573):391–6. Epub 2015/07/16. doi: 10.1038/nature14655 26176916.
111. Pei J, Kim BH, Grishin NV. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res. 2008;36(7):2295–300. Epub 2008/02/22. doi: 10.1093/nar/gkn072 18287115.
112. Shen MY, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15(11):2507–24. Epub 2006/11/01. doi: 10.1110/ps.062416606 17075131.
113. Dolinsky TJ, Czodrowski P, Li H, Nielsen JE, Jensen JH, Klebe G, et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 2007;35(Web Server issue):W522–5. Epub 2007/05/10. doi: 10.1093/nar/gkm276 17488841.
114. Jurrus E, Engel D, Star K, Monson K, Brandi J, Felberg LE, et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018;27(1):112–28. Epub 2017/08/25. doi: 10.1002/pro.3280 28836357.
115. Nichols L, Freund M, Ng C, Kau A, Parisi M, Taylor A, et al. The National Institutes of Health Neurobiobank: a federated national network of human brain and tissue repositories. Biol Psychiatry. 2014;75(12):e21–2. Epub 2013/10/01. doi: 10.1016/j.biopsych.2013.07.039 24074636.
116. Cheung KWK, van Groen BD, Spaans E, van Borselen MD, De Brujin ACJM, Simons-Oosterhuis Y, et al. A comprehensive analysis of ontogeny of renal drug transporters: mRNA analyses, quantitative proteomics and localization. Clinical Pharmacology and Therapeutics submitted for publication.
117. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62. Epub 2009/04/21. doi: 10.1038/nmeth.1322 19377485.
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 9
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Akutní intermitentní porfyrie
- Vztah užívání alkoholu a mužské fertility
- Šanci na úspěšný průběh těhotenství snižují nevhodné hladiny progesteronu vznikající při umělém oplodnění
Nejčtenější v tomto čísle
- Origins of DNA replication
- Environmental and epigenetic regulation of Rider retrotransposons in tomato
- Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development
- Temperature preference can bias parental genome retention during hybrid evolution