Unisexual reproduction promotes competition for mating partners in the global human fungal pathogen Cryptococcus deneoformans
Autoři:
Ci Fu aff001; Torin P. Thielhelm aff001; Joseph Heitman aff001
Působiště autorů:
Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
aff001
Vyšlo v časopise:
Unisexual reproduction promotes competition for mating partners in the global human fungal pathogen Cryptococcus deneoformans. PLoS Genet 15(9): e32767. doi:10.1371/journal.pgen.1008394
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008394
Souhrn
Courtship is pivotal for successful mating. However, courtship is challenging for the Cryptococcus neoformans species complex, comprised of opportunistic fungal pathogens, as the majority of isolates are α mating type. In the absence of mating partners of the opposite mating type, C. deneoformans can undergo unisexual reproduction, during which a yeast-to-hyphal morphological transition occurs. Hyphal growth during unisexual reproduction is a quantitative trait, which reflects a strain’s ability to undergo unisexual reproduction. In this study, we determined whether unisexual reproduction confers an ecological benefit by promoting foraging for mating partners. Through competitive mating assays using strains with different abilities to produce hyphae, we showed that unisexual reproduction potential did not enhance competition for mating partners of the same mating type, but when cells of the opposite mating type were present, cells with enhanced hyphal growth were more competitive for mating partners of either the same or opposite mating type. Enhanced mating competition was also observed in a strain with increased hyphal production that lacks the mating repressor gene GPA3, which contributes to the pheromone response. Hyphal growth in unisexual strains also enables contact between adjacent colonies and enhances mating efficiency during mating confrontation assays. The pheromone response pathway activation positively correlated with unisexual reproduction hyphal growth during bisexual mating and exogenous pheromone promoted bisexual cell fusion. Despite the benefit in competing for mating partners, unisexual reproduction conferred a fitness cost. Taken together, these findings suggest C. deneoformans employs hyphal growth to facilitate contact between colonies at long distances and utilizes pheromone sensing to enhance mating competition.
Klíčová slova:
Biology and life sciences – Cell biology – Cell physiology – Cell fusion – Biochemistry – Pheromones – Psychology – Behavior – Animal behavior – Foraging – Zoology – Organisms – Eukaryota – Fungi – Yeast – Saccharomyces – Saccharomyces cerevisiae – Candida – Candida albicans – Cryptococcus – Cryptococcus neoformans – Microbiology – Medical microbiology – Microbial pathogens – Fungal pathogens – Mycology – Genetics – Gene expression – Social sciences – Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Yeast and fungal models – Medicine and health sciences – Pathology and laboratory medicine – Pathogens
Zdroje
1. Muller M.N., and Wrangham R.W. (2009). Sexual coercion in primates and humans: an evolutionary perspective on male aggression against females, (Cambridge, Mass.: Harvard University Press).
2. Clark C.J., and Mistick E.A. (2018). Strategic acoustic control of a hummingbird courtship dive. Curr Biol 28, 1257–1264. doi: 10.1016/j.cub.2018.03.021 29657113
3. Clemens J., Coen P., Roemschied F.A., Pereira T.D., Mazumder D., Aldarondo D.E., Pacheco D.A., and Murthy M. (2018). Discovery of a new song mode in Drosophila reveals hidden structure in the sensory and neural drivers of behavior. Curr Biol 28, 2400–2412 e2406. doi: 10.1016/j.cub.2018.06.011 30057309
4. Lardner B., and bin Lakim M. (2002). Animal communication: tree-hole frogs exploit resonance effects. Nature 420, 475. doi: 10.1038/420475a 12466831
5. Berglund A., and Rosenqvist G. (2001). Male pipefish prefer ornamented females. Anim Behav 61, 345–350.
6. Ydenberg C.A., and Rose M.D. (2008). Yeast mating: a model system for studying cell and nuclear fusion. Methods Mol. Biol. 475, 3–20. doi: 10.1007/978-1-59745-250-2_1 18979235
7. Dyer P.S., Ingram D.S., and Johnstone K. (1992). The control of sexual morphogenesis in the ascomycotina. Biol Rev 67, 421–458.
8. Miller M.G., and Johnson A.D. (2002). White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110, 293–302. doi: 10.1016/s0092-8674(02)00837-1 12176317
9. Jones S.K. Jr., and Bennett R.J. (2011). Fungal mating pheromones: choreographing the dating game. Fungal Genet. Biol. 48, 668–676. doi: 10.1016/j.fgb.2011.04.001 21496492
10. Jackson C.L., and Hartwell L.H. (1990). Courtship in Saccharomyces cerevisiae: an early cell-cell interaction during mating. Mol. Cell Biol. 10, 2202–2213. doi: 10.1128/mcb.10.5.2202 2183023
11. Jackson C.L., and Hartwell L.H. (1990). Courtship in S. cerevisiae: both cell types choose mating partners by responding to the strongest pheromone signal. Cell 63, 1039–1051. doi: 10.1016/0092-8674(90)90507-b 2257622
12. Dudin O., Merlini L., and Martin S.G. (2016). Spatial focalization of pheromone/MAPK signaling triggers commitment to cell-cell fusion. Genes Dev. 30, 2226–2239. doi: 10.1101/gad.286922.116 27798845
13. Merlini L., Khalili B., Bendezu F.O., Hurwitz D., Vincenzetti V., Vavylonis D., and Martin S.G. (2016). Local pheromone release from dynamic polarity sites underlies cell-cell pairing during yeast mating. Curr Biol. 26, 1117–1125. doi: 10.1016/j.cub.2016.02.064 27020743
14. Scaduto C.M., Kabrawala S., Thomson G.J., Scheving W., Ly A., Anderson M.Z., Whiteway M., and Bennett R.J. (2017). Epigenetic control of pheromone MAPK signaling determines sexual fecundity in Candida albicans. Proc. Natl. Acad. Sci. USA 114, 13780–13785. doi: 10.1073/pnas.1711141115 29255038
15. Kwon-Chung K.J. (1976). Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. Mycologia 68, 821–833. 790172
16. Lin X., Hull C.M., and Heitman J. (2005). Sexual reproduction between partners of the same mating type in Cryptococcus neoformans. Nature 434, 1017–1021. doi: 10.1038/nature03448 15846346
17. Wickes B.L., Mayorga M.E., Edman U., and Edman J.C. (1996). Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the α-mating type. Proc. Natl. Acad. Sci. USA 93, 7327–7331. doi: 10.1073/pnas.93.14.7327 8692992
18. Fu C., Sun S., Billmyre R.B., Roach K.C., and Heitman J. (2015). Unisexual versus bisexual mating in Cryptococcus neoformans: Consequences and biological impacts. Fungal Genet. Biol. 78, 65–75. doi: 10.1016/j.fgb.2014.08.008 25173822
19. Wang L., and Lin X. (2011). Mechanisms of unisexual mating in Cryptococcus neoformans. Fungal Genet. Biol. 48, 651–660. doi: 10.1016/j.fgb.2011.02.001 21320625
20. Gyawali R., Zhao Y., Lin J., Fan Y., Xu X., Upadhyay S., and Lin X. (2017). Pheromone independent unisexual development in Cryptococcus neoformans. PLoS Genet. 13, e1006772. doi: 10.1371/journal.pgen.1006772 28467481
21. Xu X., Lin J., Zhao Y., Kirkman E., So Y.S., Bahn Y.S., and Lin X. (2017). Glucosamine stimulates pheromone-independent dimorphic transition in Cryptococcus neoformans by promoting Crz1 nuclear translocation. PLoS Genet 13, e1006982. doi: 10.1371/journal.pgen.1006982 28898238
22. Tian X., He G.-J., Hu P., Chen L., Tao C., Cui Y.-L., Shen L., Ke W., Xu H., Zhao Y., et al. (2018). Cryptococcus neoformans sexual reproduction is controlled by a quorum sensing peptide. Nat. Microbiol. 3, 698–707. doi: 10.1038/s41564-018-0160-4 29784977
23. Fu C., and Heitman J. (2017). PRM1 and KAR5 function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex. PLoS Genet. 13, e1007113. doi: 10.1371/journal.pgen.1007113 29176784
24. Fu C., Donadio N., Cardenas M.E., and Heitman J. (2018). Dissecting the roles of the calcineurin pathway in unisexual reproduction, stress responses, and virulence in Cryptococcus deneoformans. Genetics 208, 639–653. doi: 10.1534/genetics.117.300422 29233811
25. Kwon-Chung K.J., and Bennett J.E. (1978). Distribution of α and a mating types of Cryptococcus neoformans among natural and clinical isolates. Am. J. Epidemiol 108, 337–340. doi: 10.1093/oxfordjournals.aje.a112628 364979
26. Litvintseva A.P., Kestenbaum L., Vilgalys R., and Mitchell T.G. (2005). Comparative analysis of environmental and clinical populations of Cryptococcus neoformans. J. Clin. Microbiol. 43, 556–564. doi: 10.1128/JCM.43.2.556-564.2005 15695645
27. Cogliati M., D'Amicis R., Zani A., Montagna M.T., Caggiano G., De Giglio O., Balbino S., De Donno A., Serio F., Susever S., et al. (2016). Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean basin. FEMS Yeast Res 16.
28. Roach K.C., and Heitman J. (2014). Unisexual reproduction reverses Muller's ratchet. Genetics 198, 1059–1069. doi: 10.1534/genetics.114.170472 25217049
29. Ni M., Feretzaki M., Li W., Floyd-Averette A., Mieczkowski P., Dietrich F.S., and Heitman J. (2013). Unisexual and heterosexual meiotic reproduction generate aneuploidy and phenotypic diversity de novo in the yeast Cryptococcus neoformans. PLoS Biol. 11, e1001653. doi: 10.1371/journal.pbio.1001653 24058295
30. Saul N., Krockenberger M., and Carter D. (2008). Evidence of recombination in mixed-mating-type and alpha-only populations of Cryptococcus gattii sourced from single eucalyptus tree hollows. Eukaryot. Cell 7, 727–734. doi: 10.1128/EC.00020-08 18281600
31. Litvintseva A.P., Marra R.E., Nielsen K., Heitman J., Vilgalys R., and Mitchell T.G. (2003). Evidence of sexual recombination among Cryptococcus neoformans serotype A isolates in Sub-Saharan Africa. Eukaryot. Cell 2, 1162–1168. doi: 10.1128/EC.2.6.1162-1168.2003 14665451
32. Campbell L.T., Currie B.J., Krockenberger M., Malik R., Meyer W., Heitman J., and Carter D. (2005). Clonality and recombination in genetically differentiated subgroups of Cryptococcus gattii. Eukaryot. Cell 4, 1403–1409. doi: 10.1128/EC.4.8.1403-1409.2005 16087745
33. Cullen P.J., and Sprague G.F. Jr. (2012). The regulation of filamentous growth in yeast. Genetics 190, 23–49. doi: 10.1534/genetics.111.127456 22219507
34. Phadke S.S., Feretzaki M., and Heitman J. (2013). Unisexual reproduction enhances fungal competitiveness by promoting habitat exploration via hyphal growth and sporulation. Eukaryot. Cell 12, 1155–1159. doi: 10.1128/EC.00147-13 23794511
35. Lin X., Huang J.C., Mitchell T.G., and Heitman J. (2006). Virulence attributes and hyphal growth of C. neoformans are quantitative traits and the MATα allele enhances filamentation. PLoS Genet. 2, e187. doi: 10.1371/journal.pgen.0020187 17112316
36. Heitman J., Allen B., Alspaugh J.A., and Kwon-Chung K.J. (1999). On the origins of congenic MATalpha and MATa strains of the pathogenic yeast Cryptococcus neoformans. Fungal Genet Biol 28, 1–5. doi: 10.1006/fgbi.1999.1155 10512666
37. Kwon-Chung K.J. (1975). A new genus, Filobasidiella, the perfect state of Cryptococcus neoformans. Mycologia 67, 1197–1200. 765816
38. Kwon-Chung K.J., Edman J.C., and Wickes B.L. (1992). Genetic association of mating types and virulence in Cryptococcus neoformans. Infect. Immun. 60, 602–605. 1730495
39. Zhai B., Zhu P., Foyle D., Upadhyay S., Idnurm A., and Lin X. (2013). Congenic strains of the filamentous form of Cryptococcus neoformans for studies of fungal morphogenesis and virulence. Infect. Immun. 81, 2626–2637. doi: 10.1128/IAI.00259-13 23670559
40. Hsueh Y.P., Xue C., and Heitman J. (2007). G protein signaling governing cell fate decisions involves opposing Gα subunits in Cryptococcus neoformans. Mol. Biol. Cell 18, 3237–3249. doi: 10.1091/mbc.E07-02-0133 17581859
41. Gong J., Grodsky J.D., Zhang Z., and Wang P. (2014). A Ric8/synembryn homolog promotes Gpa1 and Gpa2 activation to respectively regulate cyclic AMP and pheromone signaling in Cryptococcus neoformans. Eukaryot Cell 13, 1290–1299. doi: 10.1128/EC.00109-14 25084863
42. Feretzaki M., and Heitman J. (2013). Genetic circuits that govern bisexual and unisexual reproduction in Cryptococcus neoformans. PLoS Genet. 9, e1003688. doi: 10.1371/journal.pgen.1003688 23966871
43. Nielsen K., Cox G.M., Wang P., Toffaletti D.L., Perfect J.R., and Heitman J. (2003). Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and α isolates. Infect. Immun. 71, 4831–4841. doi: 10.1128/IAI.71.9.4831-4841.2003 12933823
44. Huberman L.B., and Murray A.W. (2013). Genetically engineered transvestites reveal novel mating genes in budding yeast. Genetics 195, 1277–1290. doi: 10.1534/genetics.113.155846 24121774
45. Sprague G.F. Jr., and Herskowitz I. (1981). Control of yeast cell type by the mating type locus. I. Identification and control of expression of the a-specific gene BAR1. J. Mol. Biol. 153, 305–321. doi: 10.1016/0022-2836(81)90280-1 7040681
46. Banderas A., Koltai M., Anders A., and Sourjik V. (2016). Sensory input attenuation allows predictive sexual response in yeast. Nat Commun 7, 12590. doi: 10.1038/ncomms12590 27557894
47. Jin M., Errede B., Behar M., Mather W., Nayak S., Hasty J., Dohlman H.G., and Elston T.C. (2011). Yeast dynamically modify their environment to achieve better mating efficiency. Sci Signal 4.
48. Shen W.C., Davidson R.C., Cox G.M., and Heitman J. (2002). Pheromones stimulate mating and differentiation via paracrine and autocrine signaling in Cryptococcus neoformans. Eukaryot. Cell 1, 366–377. doi: 10.1128/EC.1.3.366-377.2002 12455985
49. Lin X., Jackson J.C., Feretzaki M., Xue C., and Heitman J. (2010). Transcription factors Mat2 and Znf2 operate cellular circuits orchestrating opposite- and same-sex mating in Cryptococcus neoformans. PLoS Genet. 6, e1000953. doi: 10.1371/journal.pgen.1000953 20485569
50. Erdman S., and Snyder M. (2001). A filamentous growth response mediated by the yeast mating pathway. Genetics 159, 919–928. 11729141
51. Davidson R.C., Moore T.D., Odom A.R., and Heitman J. (2000). Characterization of the MFα pheromone of the human fungal pathogen cryptococcus neoformans. Mol Microbiol 38, 1017–1026. doi: 10.1046/j.1365-2958.2000.02213.x 11123675
52. Lang G.I., Murray A.W., and Botstein D. (2009). The cost of gene expression underlies a fitness trade-off in yeast. Proc. Natl. Acad. Sci. USA 106, 5755–5760. doi: 10.1073/pnas.0901620106 19299502
53. Tscharke R.L., Lazera M., Chang Y.C., Wickes B.L., and Kwon-Chung K.J. (2003). Haploid fruiting in Cryptococcus neoformans is not mating type α-specific. Fungal Genet. Biol. 39, 230–237. 12892636
54. Newby G.A., and Lindquist S. (2017). Pioneer cells established by the [SWI+] prion can promote dispersal and out-crossing in yeast. PLoS Biol 15, e2003476. doi: 10.1371/journal.pbio.2003476 29135981
55. Fraser J.A., Subaran R.L., Nichols C.B., and Heitman J. (2003). Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot. Cell 2, 1036–1045. doi: 10.1128/EC.2.5.1036-1045.2003 14555486
56. Idnurm A., Reedy J.L., Nussbaum J.C., and Heitman J. (2004). Cryptococcus neoformans virulence gene discovery through insertional mutagenesis. Eukaryot. Cell 3, 420–429. doi: 10.1128/EC.3.2.420-429.2004 15075272
57. Davidson R.C., Cruz M.C., Sia R.A., Allen B., Alspaugh J.A., and Heitman J. (2000). Gene disruption by biolistic transformation in serotype D strains of Cryptococcus neoformans. Fungal Genet. Biol. 29, 38–48. doi: 10.1006/fgbi.1999.1180 10779398
58. Davidson R.C., Blankenship J.R., Kraus P.R., de Jesus Berrios M., Hull C.M., D'Souza C., Wang P., and Heitman J. (2002). A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148, 2607–2615. doi: 10.1099/00221287-148-8-2607 12177355
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 9
- Management pacientů s MPN a neobvyklou kombinací genových přestaveb – systematický přehled a kazuistiky
- Management péče o pacientku s karcinomem ovaria a neočekávanou mutací CDH1 – kazuistika
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Vliv kvality morfologie spermií na úspěšnost intrauterinní inseminace
- Akutní intermitentní porfyrie
Nejčtenější v tomto čísle
- Origins of DNA replication
- Environmental and epigenetic regulation of Rider retrotransposons in tomato
- Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development
- Temperature preference can bias parental genome retention during hybrid evolution