The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase
Autoři:
David W. Adams aff001; Jorge M. Pereira aff001; Candice Stoudmann aff001; Sandrine Stutzmann aff001; Melanie Blokesch aff001
Působiště autorů:
Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH, Lausanne, Switzerland
aff001
Vyšlo v časopise:
The type IV pilus protein PilU functions as a PilT-dependent retraction ATPase. PLoS Genet 15(9): e32767. doi:10.1371/journal.pgen.1008393
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008393
Souhrn
Type IV pili are dynamic cell surface appendages found throughout the bacteria. The ability of these structures to undergo repetitive cycles of extension and retraction underpins their crucial roles in adhesion, motility and natural competence for transformation. In the best-studied systems a dedicated retraction ATPase PilT powers pilus retraction. Curiously, a second presumed retraction ATPase PilU is often encoded immediately downstream of pilT. However, despite the presence of two potential retraction ATPases, pilT deletions lead to a total loss of pilus function, raising the question of why PilU fails to take over. Here, using the DNA-uptake pilus and mannose-sensitive haemagglutinin (MSHA) pilus of Vibrio cholerae as model systems, we show that inactivated PilT variants, defective for either ATP-binding or hydrolysis, have unexpected intermediate phenotypes that are PilU-dependent. In addition to demonstrating that PilU can function as a bona fide retraction ATPase, we go on to make the surprising discovery that PilU functions exclusively in a PilT-dependent manner and identify a naturally occurring pandemic V. cholerae PilT variant that renders PilU essential for pilus function. Finally, we show that Pseudomonas aeruginosa PilU also functions as a PilT-dependent retraction ATPase, providing evidence that the functional coupling between PilT and PilU could be a widespread mechanism for optimal pilus retraction.
Klíčová slova:
Biology and life sciences – Cell biology – Cellular structures and organelles – Pili and fimbriae – Biochemistry – Enzymology – Enzymes – Phosphatases – Adenosine triphosphatase – Proteins – Microbiology – Medical microbiology – Microbial pathogens – Bacterial pathogens – Vibrio cholerae – Pseudomonas aeruginosa – Organisms – Bacteria – Vibrio – Pseudomonas – Genetics – Genetic elements – Genomics – Mobile genetic elements – Transposable elements – Medicine and health sciences – Pathology and laboratory medicine – Pathogens – Virulence factors – Pathogen motility – Physical sciences – Chemistry – Polymer chemistry – Macromolecules – Polymers – chitin – Materials science – Materials – Research and analysis methods – Database and informatics methods – Bioinformatics – Sequence analysis – Sequence alignment
Zdroje
1. Giltner CL, Nguyen Y, Burrows LL. Type IV pilin proteins: versatile molecular modules. Microbiology and molecular biology reviews: MMBR. 2012 Dec;76(4):740–72. doi: 10.1128/MMBR.00035-12 23204365. Pubmed Central PMCID: 3510520.
2. Berry JL, Pelicic V. Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS microbiology reviews. 2015 Jan;39(1):134–54. doi: 10.1093/femsre/fuu001 25793961. Pubmed Central PMCID: 4471445.
3. Makarova KS, Koonin EV, Albers SV. Diversity and Evolution of Type IV pili Systems in Archaea. Frontiers in microbiology. 2016;7:667. doi: 10.3389/fmicb.2016.00667 27199977. Pubmed Central PMCID: 4858521.
4. Maier B, Wong GCL. How Bacteria Use Type IV Pili Machinery on Surfaces. Trends in microbiology. 2015 Dec;23(12):775–88. doi: 10.1016/j.tim.2015.09.002 26497940.
5. Pelicic V. Type IV pili: e pluribus unum? Molecular microbiology. 2008 May;68(4):827–37. doi: 10.1111/j.1365-2958.2008.06197.x 18399938.
6. Gold VA, Salzer R, Averhoff B, Kuhlbrandt W. Structure of a type IV pilus machinery in the open and closed state. eLife. 2015 May 21;4. doi: 10.7554/eLife.07380 25997099. Pubmed Central PMCID: 4463427.
7. Chang YW, Rettberg LA, Treuner-Lange A, Iwasa J, Søgaard-Andersen L, Jensen GJ. Architecture of the type IVa pilus machine. Science. 2016 Mar 11;351(6278):aad2001. doi: 10.1126/science.aad2001 26965631.
8. Hospenthal MK, Costa TRD, Waksman G. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nature reviews Microbiology. 2017 May 12;15(6):365–79. doi: 10.1038/nrmicro.2017.40 28496159.
9. McCallum M, Burrows LL, Howell PL. The Dynamic Structures of the Type IV Pilus. Microbiology spectrum. 2019 Mar;7(2). doi: 10.1128/microbiolspec.PSIB-0006-2018 30825300.
10. Craig L, Forest KT, Maier B. Type IV pili: dynamics, biophysics and functional consequences. Nature reviews Microbiology. 2019 Apr 15. doi: 10.1038/s41579-019-0195-4 30988511.
11. Merz AJ, So M, Sheetz MP. Pilus retraction powers bacterial twitching motility. Nature. 2000 Sep 7;407(6800):98–102. doi: 10.1038/35024105 10993081.
12. Skerker JM, Berg HC. Direct observation of extension and retraction of type IV pili. Proceedings of the National Academy of Sciences of the United States of America. 2001 Jun 5;98(12):6901–4. doi: 10.1073/pnas.121171698 11381130. Pubmed Central PMCID: 34450.
13. Chiang P, Sampaleanu LM, Ayers M, Pahuta M, Howell PL, Burrows LL. Functional role of conserved residues in the characteristic secretion NTPase motifs of the Pseudomonas aeruginosa type IV pilus motor proteins PilB, PilT and PilU. Microbiology. 2008 Jan;154(Pt 1):114–26. doi: 10.1099/mic.0.2007/011320-0 18174131.
14. Jakovljevic V, Leonardy S, Hoppert M, Søgaard-Andersen L. PilB and PilT are ATPases acting antagonistically in type IV pilus function in Myxococcus xanthus. Journal of bacteriology. 2008 Apr;190(7):2411–21. doi: 10.1128/JB.01793-07 18223089. Pubmed Central PMCID: 2293208.
15. Planet PJ, Kachlany SC, DeSalle R, Figurski DH. Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proceedings of the National Academy of Sciences of the United States of America. 2001 Feb 27;98(5):2503–8. doi: 10.1073/pnas.051436598 11226268. Pubmed Central PMCID: 30167.
16. Iyer LM, Leipe DD, Koonin EV, Aravind L. Evolutionary history and higher order classification of AAA+ ATPases. Journal of structural biology. 2004 Apr-May;146(1–2):11–31. doi: 10.1016/j.jsb.2003.10.010 15037234.
17. Herdendorf TJ, McCaslin DR, Forest KT. Aquifex aeolicus PilT, homologue of a surface motility protein, is a thermostable oligomeric NTPase. Journal of bacteriology. 2002 Dec;184(23):6465–71. doi: 10.1128/JB.184.23.6465-6471.2002 12426333. Pubmed Central PMCID: 135430.
18. Forest KT, Satyshur KA, Worzalla GA, Hansen JK, Herdendorf TJ. The pilus-retraction protein PilT: ultrastructure of the biological assembly. Acta crystallographica Section D, Biological crystallography. 2004 May;60(Pt 5):978–82. doi: 10.1107/S0907444904006055 15103158.
19. Sexton JA, Pinkner JS, Roth R, Heuser JE, Hultgren SJ, Vogel JP. The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. Journal of bacteriology. 2004 Mar;186(6):1658–66. doi: 10.1128/JB.186.6.1658-1666.2004 14996796. Pubmed Central PMCID: 355965.
20. Satyshur KA, Worzalla GA, Meyer LS, Heiniger EK, Aukema KG, Misic AM, et al. Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. Structure. 2007 Mar;15(3):363–76. doi: 10.1016/j.str.2007.01.018 17355871. Pubmed Central PMCID: 1978094.
21. Misic AM, Satyshur KA, Forest KT. P. aeruginosa PilT structures with and without nucleotide reveal a dynamic type IV pilus retraction motor. Journal of molecular biology. 2010 Jul 30;400(5):1011–21. doi: 10.1016/j.jmb.2010.05.066 20595000. Pubmed Central PMCID: 2918248.
22. Mancl JM, Black WP, Robinson H, Yang Z, Schubot FD. Crystal Structure of a Type IV Pilus Assembly ATPase: Insights into the Molecular Mechanism of PilB from Thermus thermophilus. Structure. 2016 Nov 1;24(11):1886–97. doi: 10.1016/j.str.2016.08.010 27667690.
23. Takhar HK, Kemp K, Kim M, Howell PL, Burrows LL. The platform protein is essential for type IV pilus biogenesis. The Journal of biological chemistry. 2013 Apr 5;288(14):9721–8. doi: 10.1074/jbc.M113.453506 23413032. Pubmed Central PMCID: 3617274.
24. Bischof LF, Friedrich C, Harms A, Søgaard-Andersen L, van der Does C. The Type IV Pilus Assembly ATPase PilB of Myxococcus xanthus Interacts with the Inner Membrane Platform Protein PilC and the Nucleotide-binding Protein PilM. The Journal of biological chemistry. 2016 Mar 25;291(13):6946–57. doi: 10.1074/jbc.M115.701284 26851283. Pubmed Central PMCID: 4807279.
25. McCallum M, Tammam S, Khan A, Burrows LL, Howell PL. The molecular mechanism of the type IVa pilus motors. Nature communications. 2017 May 5;8:15091. doi: 10.1038/ncomms15091 28474682. Pubmed Central PMCID: 5424180.
26. Solanki V, Kapoor S, Thakur KG. Structural insights into the mechanism of Type IVa pilus extension and retraction ATPase motors. The FEBS journal. 2018 Sep;285(18):3402–21. doi: 10.1111/febs.14619 30066435.
27. Maier B, Potter L, So M, Long CD, Seifert HS, Sheetz MP. Single pilus motor forces exceed 100 pN. Proceedings of the National Academy of Sciences of the United States of America. 2002 Dec 10;99(25):16012–7. doi: 10.1073/pnas.242523299 12446837. Pubmed Central PMCID: 138556.
28. Clausen M, Jakovljevic V, Søgaard-Andersen L, Maier B. High-force generation is a conserved property of type IV pilus systems. Journal of bacteriology. 2009 Jul;191(14):4633–8. doi: 10.1128/JB.00396-09 19429611. Pubmed Central PMCID: 2704717.
29. Whitchurch CB, Hobbs M, Livingston SP, Krishnapillai V, Mattick JS. Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene. 1991 May 15;101(1):33–44. doi: 10.1016/0378-1119(91)90221-v 1676385.
30. Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America. 2015 Jun 16;112(24):7563–8. doi: 10.1073/pnas.1502025112 26041805. Pubmed Central PMCID: 4475988.
31. Graupner S, Weger N, Sohni M, Wackernagel W. Requirement of novel competence genes pilT and pilU of Pseudomonas stutzeri for natural transformation and suppression of pilT deficiency by a hexahistidine tag on the type IV pilus protein PilAI. Journal of bacteriology. 2001 Aug;183(16):4694–701. doi: 10.1128/JB.183.16.4694-4701.2001 11466271. Pubmed Central PMCID: 99522.
32. Leong CG, Bloomfield RA, Boyd CA, Dornbusch AJ, Lieber L, Liu F, et al. The role of core and accessory type IV pilus genes in natural transformation and twitching motility in the bacterium Acinetobacter baylyi. PloS one. 2017;12(8):e0182139. doi: 10.1371/journal.pone.0182139 28771515. Pubmed Central PMCID: 5542475.
33. Han X, Kennan RM, Davies JK, Reddacliff LA, Dhungyel OP, Whittington RJ, et al. Twitching motility is essential for virulence in Dichelobacter nodosus. Journal of bacteriology. 2008 May;190(9):3323–35. doi: 10.1128/JB.01807-07 18310333. Pubmed Central PMCID: 2347375.
34. Pujol C, Eugène E, Marceau M, Nassif X. The meningococcal PilT protein is required for induction of intimate attachment to epithelial cells following pilus-mediated adhesion. Proceedings of the National Academy of Sciences of the United States of America. 1999 Mar 30;96(7):4017–22. doi: 10.1073/pnas.96.7.4017 10097155. Pubmed Central PMCID: 22412.
35. Brown DR, Helaine S, Carbonnelle E, Pelicic V. Systematic functional analysis reveals that a set of seven genes is involved in fine-tuning of the multiple functions mediated by type IV pili in Neisseria meningitidis. Infection and immunity. 2010 Jul;78(7):3053–63. doi: 10.1128/IAI.00099-10 20439474. Pubmed Central PMCID: 2897404.
36. Wolfgang M, Lauer P, Park HS, Brossay L, Hebert J, Koomey M. PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Molecular microbiology. 1998 Jul;29(1):321–30. doi: 10.1046/j.1365-2958.1998.00935.x 9701824.
37. Bhaya D, Bianco NR, Bryant D, Grossman A. Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803. Molecular microbiology. 2000 Aug;37(4):941–51. doi: 10.1046/j.1365-2958.2000.02068.x 10972813.
38. Kurre R, Höne A, Clausen M, Meel C, Maier B. PilT2 enhances the speed of gonococcal type IV pilus retraction and of twitching motility. Molecular microbiology. 2012 Nov;86(4):857–65. doi: 10.1111/mmi.12022 23035839.
39. Speers AM, Schindler BD, Hwang J, Genc A, Reguera G. Genetic Identification of a PilT Motor in Geobacter sulfurreducens Reveals a Role for Pilus Retraction in Extracellular Electron Transfer. Frontiers in microbiology. 2016;7:1578. doi: 10.3389/fmicb.2016.01578 27799920. Pubmed Central PMCID: 5065972.
40. Whitchurch CB, Mattick JS. Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa. Molecular microbiology. 1994 Sep;13(6):1079–91. doi: 10.1111/j.1365-2958.1994.tb00499.x 7854122.
41. Park HS, Wolfgang M, Koomey M. Modification of type IV pilus-associated epithelial cell adherence and multicellular behavior by the PilU protein of Neisseria gonorrhoeae. Infection and immunity. 2002 Jul;70(7):3891–903. doi: 10.1128/IAI.70.7.3891-3903.2002 12065533. Pubmed Central PMCID: 128069.
42. Eriksson J, Eriksson OS, Jonsson AB. Loss of meningococcal PilU delays microcolony formation and attenuates virulence in vivo. Infection and immunity. 2012 Jul;80(7):2538–47. doi: 10.1128/IAI.06354-11 22508857. Pubmed Central PMCID: 3416451.
43. Comolli JC, Hauser AR, Waite L, Whitchurch CB, Mattick JS, Engel JN. Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infection and immunity. 1999 Jul;67(7):3625–30. 10377148. Pubmed Central PMCID: 116553.
44. Watnick PI, Fullner KJ, Kolter R. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. Journal of bacteriology. 1999 Jun;181(11):3606–9. 10348878. Pubmed Central PMCID: 93833.
45. Chiavelli DA, Marsh JW, Taylor RK. The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Applied and environmental microbiology. 2001 Jul;67(7):3220–5. doi: 10.1128/AEM.67.7.3220-3225.2001 11425745. Pubmed Central PMCID: 93004.
46. Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK. The Vibrio cholerae chitin utilization program. Proceedings of the National Academy of Sciences of the United States of America. 2004 Feb 24;101(8):2524–9. doi: 10.1073/pnas.0308707101 14983042. Pubmed Central PMCID: 356983.
47. Jones CJ, Utada A, Davis KR, Thongsomboon W, Zamorano Sanchez D, Banakar V, et al. C-di-GMP Regulates Motile to Sessile Transition by Modulating MshA Pili Biogenesis and Near-Surface Motility Behavior in Vibrio cholerae. PLoS pathogens. 2015 Oct;11(10):e1005068. doi: 10.1371/journal.ppat.1005068 26505896. Pubmed Central PMCID: 4624765.
48. Jouravleva EA, McDonald GA, Marsh JW, Taylor RK, Boesman-Finkelstein M, Finkelstein RA. The Vibrio cholerae mannose-sensitive hemagglutinin is the receptor for a filamentous bacteriophage from V. cholerae O139. Infection and immunity. 1998 Jun;66(6):2535–9. 9596713. Pubmed Central PMCID: 108235.
49. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK. Chitin induces natural competence in Vibrio cholerae. Science. 2005 Dec 16;310(5755):1824–7. doi: 10.1126/science.1120096 16357262.
50. Seitz P, Blokesch M. DNA-uptake machinery of naturally competent Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America. 2013 Oct 29;110(44):17987–92. doi: 10.1073/pnas.1315647110 24127573. Pubmed Central PMCID: 3816411.
51. Ellison CK, Dalia TN, Vidal Ceballos A, Wang JC, Biais N, Brun YV, et al. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nature microbiology. 2018 Jul;3(7):773–80. doi: 10.1038/s41564-018-0174-y 29891864.
52. Adams DW, Stutzmann S, Stoudmann C, Blokesch M. DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction. Nature microbiology. 2019 Sep;4(9):1545–57. doi: 10.1038/s41564-019-0479-5 31182799.
53. Watnick PI, Kolter R. Steps in the development of a Vibrio cholerae El Tor biofilm. Molecular microbiology. 1999 Nov;34(3):586–95. doi: 10.1046/j.1365-2958.1999.01624.x 10564499. Pubmed Central PMCID: 2860543.
54. Lo Scrudato M, Blokesch M. The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS genetics. 2012;8(6):e1002778. doi: 10.1371/journal.pgen.1002778 22737089. Pubmed Central PMCID: 3380833.
55. Utada AS, Bennett RR, Fong JCN, Gibiansky ML, Yildiz FH, Golestanian R, et al. Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nature communications. 2014 Sep 19;5:4913. doi: 10.1038/ncomms5913 25234699. Pubmed Central PMCID: 4420032.
56. Ellison CK, Kan J, Dillard RS, Kysela DT, Ducret A, Berne C, et al. Obstruction of pilus retraction stimulates bacterial surface sensing. Science. 2017 Oct 27;358(6362):535–8. doi: 10.1126/science.aan5706 29074778. Pubmed Central PMCID: 5805138.
57. Ellison CK, Dalia TN, Dalia AB, Brun YV. Real-time microscopy and physical perturbation of bacterial pili using maleimide-conjugated molecules. Nature protocols. 2019 Jun;14(6):1803–19. doi: 10.1038/s41596-019-0162-6 31028374.
58. Walker JE, Saraste M, Runswick MJ, Gay NJ. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. The EMBO journal. 1982;1(8):945–51. 6329717. Pubmed Central PMCID: 553140.
59. Aukema KG, Kron EM, Herdendorf TJ, Forest KT. Functional dissection of a conserved motif within the pilus retraction protein PilT. Journal of bacteriology. 2005 Jan;187(2):611–8. doi: 10.1128/JB.187.2.611-618.2005 15629932. Pubmed Central PMCID: 543540.
60. Bertrand JJ, West JT, Engel JN. Genetic analysis of the regulation of type IV pilus function by the Chp chemosensory system of Pseudomonas aeruginosa. Journal of bacteriology. 2010 Feb;192(4):994–1010. doi: 10.1128/JB.01390-09 20008072. Pubmed Central PMCID: 2812951.
61. Georgiadou M, Castagnini M, Karimova G, Ladant D, Pelicic V. Large-scale study of the interactions between proteins involved in type IV pilus biology in Neisseria meningitidis: characterization of a subcomplex involved in pilus assembly. Molecular microbiology. 2012 Jun;84(5):857–73. doi: 10.1111/j.1365-2958.2012.08062.x 22486968.
62. McCallum M, Tammam S, Little DJ, Robinson H, Koo J, Shah M, et al. PilN Binding Modulates the Structure and Binding Partners of the Pseudomonas aeruginosa Type IVa Pilus Protein PilM. The Journal of biological chemistry. 2016 May 20;291(21):11003–15. doi: 10.1074/jbc.M116.718353 27022027. Pubmed Central PMCID: 4900251.
63. Clausen M, Koomey M, Maier B. Dynamics of type IV pili is controlled by switching between multiple states. Biophysical journal. 2009 Feb;96(3):1169–77. doi: 10.1016/j.bpj.2008.10.017 19186152. Pubmed Central PMCID: 2716576.
64. Chiang P, Habash M, Burrows LL. Disparate subcellular localization patterns of Pseudomonas aeruginosa Type IV pilus ATPases involved in twitching motility. Journal of bacteriology. 2005 Feb;187(3):829–39. doi: 10.1128/JB.187.3.829-839.2005 15659660. Pubmed Central PMCID: 545728.
65. Albert MJ. Vibrio cholerae O139 Bengal. Journal of clinical microbiology. 1994 Oct;32(10):2345–9. 7814463. Pubmed Central PMCID: 264063.
66. Cholera Working Group ICfDDR, Bangladesh. Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Cholera Working Group, International Centre for Diarrhoeal Diseases Research, Bangladesh. Lancet. 1993 Aug 14;342(8868):387–90. 8101899.
67. Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ, et al. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America. 2009 Sep 8;106(36):15442–7. doi: 10.1073/pnas.0907787106 19720995. Pubmed Central PMCID: 2741270.
68. Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH, Kariuki S, et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature. 2011 Aug 24;477(7365):462–5. doi: 10.1038/nature10392 21866102. Pubmed Central PMCID: 3736323.
69. Waldor MK, Mekalanos JJ. Emergence of a new cholera pandemic: molecular analysis of virulence determinants in Vibrio cholerae O139 and development of a live vaccine prototype. The Journal of infectious diseases. 1994 Aug;170(2):278–83. doi: 10.1093/infdis/170.2.278 8035010.
70. Joelsson A, Liu Z, Zhu J. Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of Vibrio cholerae. Infection and immunity. 2006 Feb;74(2):1141–7. doi: 10.1128/IAI.74.2.1141-1147.2006 16428762. Pubmed Central PMCID: 1360356.
71. Dorman MJ, Domman D, Uddin MI, Sharmin S, Afrad MH, Begum YA, et al. High quality reference genomes for toxigenic and non-toxigenic Vibrio cholerae serogroup O139. Scientific reports. 2019 Apr 10;9(1):5865. doi: 10.1038/s41598-019-41883-x 30971707. Pubmed Central PMCID: 6458141.
72. Adams DW, Stutzmann S, Stoudmann C, Blokesch M. DNA-uptake pilus of Vibrio cholerae capable of kin-discriminated auto-aggregation. bioRxiv. June 2018:354878.
73. Chlebek JL, Hughes HQ, Ratkiewicz AS, Rayyan R, Wang JC-Y, Herrin BE, et al. PilT and PilU are homohexameric ATPases that coordinate to retract type IVa pili. bioRxiv. May 2019:634048.
74. Talà L, Fineberg A, Kukura P, Persat A. Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements. Nature microbiology. 2019 May;4(5):774–80. doi: 10.1038/s41564-019-0378-9 30804544. Pubmed Central PMCID: 6522360.
75. Yildiz FH, Schoolnik GK. Role of rpoS in stress survival and virulence of Vibrio cholerae. Journal of bacteriology. 1998 Feb;180(4):773–84. 9473029. Pubmed Central PMCID: 106954.
76. Matthey N, Drebes Dörr NC, Blokesch M. Long-Read-Based Genome Sequences of Pandemic and Environmental Vibrio cholerae Strains. Microbiology resource announcements. 2018 Dec;7(23). Pubmed Central PMCID: 30574591.
77. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory Press. 1989.
78. De Souza Silva O, Blokesch M. Genetic manipulation of Vibrio cholerae by combining natural transformation with FLP recombination. Plasmid. 2010 Nov;64(3):186–95. doi: 10.1016/j.plasmid.2010.08.001 20709100.
79. Marvig RL, Blokesch M. Natural transformation of Vibrio cholerae as a tool—optimizing the procedure. BMC microbiology. 2010;10:155. doi: 10.1186/1471-2180-10-155 20509862. Pubmed Central PMCID: 2890613.
80. Blokesch M. TransFLP—a method to genetically modify Vibrio cholerae based on natural transformation and FLP-recombination. Journal of visualized experiments: JoVE. 2012 Oct 8(68):68:e3761. doi: 10.3791/3761 23093249. Pubmed Central PMCID: 3490321.
81. Bao Y, Lies DP, Fu H, Roberts GP. An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of gram-negative bacteria. Gene. 1991 Dec 20;109(1):167–8. doi: 10.1016/0378-1119(91)90604-a 1661697.
82. Karimova G, Pidoux J, Ullmann A, Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proceedings of the National Academy of Sciences of the United States of America. 1998 May 12;95(10):5752–6. doi: 10.1073/pnas.95.10.5752 9576956. Pubmed Central PMCID: 20451.
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 9
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Souvislost haplotypu M2 genu pro annexin A5 s opakovanými reprodukčními ztrátami
- Akutní intermitentní porfyrie
- Hodnota lidského choriového gonadotropinu v časném stadiu gravidity po IVF – asociace s rozvojem preeklampsie?
Nejčtenější v tomto čísle
- Origins of DNA replication
- Environmental and epigenetic regulation of Rider retrotransposons in tomato
- Evolution of the Auxin Response Factors from charophyte ancestors
- Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development