Chromosomal rearrangements as a source of new gene formation in Drosophila yakuba
Autoři:
Nicholas B. Stewart aff001; Rebekah L. Rogers aff001
Působiště autorů:
Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, United States of America
aff001; Department of Biological Sciences, Ft Hays State University, Ft Hays, KS, United States of America
aff002
Vyšlo v časopise:
Chromosomal rearrangements as a source of new gene formation in Drosophila yakuba. PLoS Genet 15(9): e32767. doi:10.1371/journal.pgen.1008314
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008314
Souhrn
The origins of new genes are among the most fundamental questions in evolutionary biology. Our understanding of the ways that new genetic material appears and how that genetic material shapes population variation remains incomplete. De novo genes and duplicate genes are a key source of new genetic material on which selection acts. To better understand the origins of these new gene sequences, we explored the ways that structural variation might alter expression patterns and form novel transcripts. We provide evidence that chromosomal rearrangements are a source of novel genetic variation that facilitates the formation of de novo exons in Drosophila. We identify 51 cases of de novo exon formation created by chromosomal rearrangements in 14 strains of D. yakuba. These new genes inherit transcription start signals and open reading frames when the 5’ end of existing genes are combined with previously untranscribed regions. Such new genes would appear with novel peptide sequences, without the necessity for secondary transitions from non-coding RNA to protein. This mechanism of new peptide formations contrasts with canonical theory of de novo gene progression requiring non-coding intermediaries that must acquire new mutations prior to loss via pseudogenization. Hence, these mutations offer a means to de novo gene creation and protein sequence formation in a single mutational step, answering a long standing open question concerning new gene formation. We further identify gene expression changes to 134 existing genes, indicating that these mutations can alter gene regulation. Population variability for chromosomal rearrangements is considerable, with 2368 rearrangements observed across 14 inbred lines. More rearrangements were identified on the X chromosome than any of the autosomes, suggesting the X is more susceptible to chromosome alterations. Together, these results suggest that chromosomal rearrangements are a source of variation in populations that is likely to be important to explain genetic and therefore phenotypic diversity.
Klíčová slova:
Drosophila melanogaster – Gene expression – Chromosome mapping – Chromosome pairs – Population genetics – Testes – X chromosomes – Invertebrate genomics
Zdroje
1. Conant GC, Wolfe KH. Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet. 2008;9(12):938–50. doi: 10.1038/nrg2482 19015656.
2. Ohno S. Evolution by gene duplication. Berlin, New York,: Springer-Verlag; 1970. xv, 160 p. p.
3. Long M, Langley CH. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science. 1993;260(5104):91–5. doi: 10.1126/science.7682012 7682012.
4. Rogers RL, Hartl DL. Chimeric genes as a source of rapid evolution in Drosophila melanogaster. Mol Biol Evol. 2012;29(2):517–29. Epub 2011/07/21. doi: 10.1093/molbev/msr184 21771717; PubMed Central PMCID: PMC3350314.
5. Zhou Q, Zhang G, Zhang Y, Xu S, Zhao R, Zhan Z, et al. On the origin of new genes in Drosophila. Genome Res. 2008;18(9):1446–55. doi: 10.1101/gr.076588.108 18550802; PubMed Central PMCID: PMC2527705.
6. Begun DJ, Lindfors HA, Thompson ME, Holloway AK. Recently evolved genes identified from Drosophila yakuba and D. erecta accessory gland expressed sequence tags. Genetics. 2006;172(3):1675–81. doi: 10.1534/genetics.105.050336 16361246; PubMed Central PMCID: PMC1456303.
7. Levine MT, Jones CD, Kern AD, Lindfors HA, Begun DJ. Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc Natl Acad Sci U S A. 2006;103(26):9935–9. doi: 10.1073/pnas.0509809103 16777968; PubMed Central PMCID: PMC1502557.
8. Zhao L, Saelao P, Jones CD, Begun DJ. Origin and spread of de novo genes in Drosophila melanogaster populations. Science. 2014;343(6172):769–72. doi: 10.1126/science.1248286 24457212; PubMed Central PMCID: PMC4391638.
9. Schlotterer C. Genes from scratch—the evolutionary fate of de novo genes. Trends Genet. 2015;31(4):215–9. doi: 10.1016/j.tig.2015.02.007 25773713; PubMed Central PMCID: PMC4383367.
10. Aminetzach YT, Macpherson JM, Petrov DA. Pesticide resistance via transposition-mediated adaptive gene truncation in Drosophila. Science. 2005;309(5735):764–7. doi: 10.1126/science.1112699 16051794.
11. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. doi: 10.1101/gr.107524.110 20644199; PubMed Central PMCID: PMC2928508.
12. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987–93. doi: 10.1093/bioinformatics/btr509 21903627; PubMed Central PMCID: PMC3198575.
13. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004;431(7011):946–57. doi: 10.1038/nature03025 15496914.
14. Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, et al. The amphioxus genome and the evolution of the chordate karyotype. Nature. 2008;453(7198):1064–71. doi: 10.1038/nature06967 18563158.
15. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062 11237011.
16. De S, Teichmann SA, Babu MM. The impact of genomic neighborhood on the evolution of human and chimpanzee transcriptome. Genome Res. 2009;19(5):785–94. doi: 10.1101/gr.086165.108 19233772; PubMed Central PMCID: PMC2675967.
17. Wilson C, Bellen HJ, Gehring WJ. Position effects on eukaryotic gene expression. Annu Rev Cell Biol. 1990;6:679–714. doi: 10.1146/annurev.cb.06.110190.003335 2275824.
18. Rogers RL, Shao L, Thornton KR. Tandem duplications lead to novel expression patterns through exon shuffling in Drosophila yakuba. PLoS Genet. 2017;13(5):e1006795. Epub 2017/05/23. doi: 10.1371/journal.pgen.1006795 28531189; PubMed Central PMCID: PMC5460883.
19. Guillen Y, Ruiz A. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution. BMC Genomics. 2012;13:53. doi: 10.1186/1471-2164-13-53 22296923; PubMed Central PMCID: PMC3355041.
20. Consortium DG. Evolution of genes and genomes on the Drosophila phylogeny. nature. 2007;450:203–18. doi: 10.1038/nature06341 17994087
21. Rogers RL, Cridland JM, Shao L, Hu TT, Andolfatto P, Thornton KR. Landscape of standing variation for tandem duplications in Drosophila yakuba and Drosophila simulans. Mol Biol Evol. 2014;31(7):1750–66. Epub 2014/04/09. doi: 10.1093/molbev/msu124 24710518; PubMed Central PMCID: PMC4069613.
22. Rogers RL. Chromosomal Rearrangements as Barriers to Genetic Homogenization between Archaic and Modern Humans. Mol Biol Evol. 2015;32(12):3064–78. doi: 10.1093/molbev/msv204 26399483; PubMed Central PMCID: PMC5009956.
23. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151–5. doi: 10.1126/science.290.5494.1151 11073452.
24. Hahn MW, Han MV, Han SG. Gene family evolution across 12 Drosophila genomes. PLoS Genet. 2007;3(11):e197. doi: 10.1371/journal.pgen.0030197 17997610; PubMed Central PMCID: PMC2065885.
25. Rogers RL, Bedford T, Hartl DL. Formation and longevity of chimeric and duplicate genes in Drosophila melanogaster. Genetics. 2009;181(1):313–22. Epub 2008/11/19. doi: 10.1534/genetics.108.091538 19015547; PubMed Central PMCID: PMC2621179.
26. Betran E, Thornton K, Long M. Retroposed new genes out of the X in Drosophila. Genome Res. 2002;12(12):1854–9. doi: 10.1101/gr.604902 12466289; PubMed Central PMCID: PMC187566.
27. Assis R, Bachtrog D. Neofunctionalization of young duplicate genes in Drosophila. Proc Natl Acad Sci U S A. 2013;110(43):17409–14. doi: 10.1073/pnas.1313759110 24101476; PubMed Central PMCID: PMC3808614.
28. Kim DSSL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biology. 2011;12.
29. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature biotechnology. 2011;29(7):644. doi: 10.1038/nbt.1883 21572440
30. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–78. doi: 10.1038/nprot.2012.016 22383036; PubMed Central PMCID: PMC3334321.
31. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11. doi: 10.1093/bioinformatics/btp120 19289445; PubMed Central PMCID: PMC2672628.
32. Montgomery EA, Huang SM, Langley CH, Judd BH. Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics. 1991;129(4):1085–98. 1783293; PubMed Central PMCID: PMC1204773.
33. Cridland JM. Structural Variation in the Genomes of Drosophila: University of California, Irvine; 2012.
34. Ranz JM, Maurin D, Chan YS, von Grotthuss M, Hillier LW, Roote J, et al. Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol. 2007;5(6):e152. doi: 10.1371/journal.pbio.0050152 17550304; PubMed Central PMCID: PMC1885836.
35. Chakraborty M, VanKuren NW, Zhao R, Zhang X, Kalsow S, Emerson JJ. Hidden genetic variation shapes the structure of functional elements in Drosophila. Nat Genet. 2018;50(1):20–5. doi: 10.1038/s41588-017-0010-y 29255259; PubMed Central PMCID: PMC5742068.
36. Barrett RD, Schluter D. Adaptation from standing genetic variation. Trends Ecol Evol. 2008;23(1):38–44. Epub 2007/11/17. doi: 10.1016/j.tree.2007.09.008 18006185.
37. Carvunis AR, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis N, et al. Proto-genes and de novo gene birth. Nature. 2012;487(7407):370–4. doi: 10.1038/nature11184 22722833; PubMed Central PMCID: PMC3401362.
38. Siepel A. Darwinian alchemy: Human genes from noncoding DNA. Genome Res. 2009;19(10):1693–5. doi: 10.1101/gr.098376.109 19797681; PubMed Central PMCID: PMC2765273.
39. Martin SA, Hewish M, Lord CJ, Ashworth A. Genomic instability and the selection of treatments for cancer. J Pathol. 2010;220(2):281–9. doi: 10.1002/path.2631 19890832.
40. Inaki K, Liu ET. Structural mutations in cancer: mechanistic and functional insights. Trends Genet. 2012;28(11):550–9. doi: 10.1016/j.tig.2012.07.002 22901976.
41. De Braekeleer M, Dao TN. Cytogenetic studies in couples experiencing repeated pregnancy losses. Hum Reprod. 1990;5(5):519–28. doi: 10.1093/oxfordjournals.humrep.a137135 2203803.
42. Martin RH. Cytogenetic determinants of male fertility. Hum Reprod Update. 2008;14(4):379–90. doi: 10.1093/humupd/dmn017 18535003; PubMed Central PMCID: PMC2423221.
43. Ionita-Laza I, Rogers AJ, Lange C, Raby BA, Lee C. Genetic association analysis of copy-number variation (CNV) in human disease pathogenesis. Genomics. 2009;93(1):22–6. doi: 10.1016/j.ygeno.2008.08.012 18822366; PubMed Central PMCID: PMC2631358.
44. Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, et al. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol. 2002;3(12):RESEARCH0084. doi: 10.1186/gb-2002-3-12-research0084 12537573; PubMed Central PMCID: PMC151186.
45. Chuong EB, Elde NC, Feschotte C. Regulatory activities of transposable elements: from conflicts to benefits. Nature Reviews Genetics. 2017;18(2):71. doi: 10.1038/nrg.2016.139 27867194
46. Cardoso-Moreira M, Emerson JJ, Clark AG, Long M. Drosophila duplication hotspots are associated with late-replicating regions of the genome. PLoS Genet. 2011;7(11):e1002340. Epub 2011/11/11. doi: 10.1371/journal.pgen.1002340 22072977; PubMed Central PMCID: PMC3207856.
47. Bachtrog D, Weiss S, Zangerl B, Brem G, Schlötterer C. Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Molecular Biology and Evolution. 1999;16(5):602–10. doi: 10.1093/oxfordjournals.molbev.a026142 10335653
48. Mackay TF, Richards S, Stone EA, Barbadilla A, Ayroles JF, Zhu D, et al. The Drosophila melanogaster Genetic Reference Panel. Nature. 2012;482(7384):173–8. Epub 2012/02/10. doi: 10.1038/nature10811 22318601; PubMed Central PMCID: PMC3683990.
49. Andolfatto P. Contrasting patterns of X-linked and autosomal nucleotide variation in Drosophila melanogaster and Drosophila simulans. Molecular Biology and Evolution. 2001;18(3):279–90. doi: 10.1093/oxfordjournals.molbev.a003804 11230529
50. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287(5461):2185–95. 10731132
51. Wright S. Evolution in Mendelian populations. Genetics. 1931;16(2):97–159. 17246615
52. Ranz JM, Castillo-Davis CI, Meiklejohn CD, Hartl DL. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science. 2003;300(5626):1742–5. doi: 10.1126/science.1085881 12805547
53. Huylmans AK, Parsch J. Variation in the X:Autosome Distribution of Male-Biased Genes among Drosophila melanogaster Tissues and Its Relationship with Dosage Compensation. Genome Biol Evol. 2015;7(7):1960–71. Epub 2015/06/26. doi: 10.1093/gbe/evv117 26108491; PubMed Central PMCID: PMC4524484.
54. Cridland JM, Macdonald SJ, Long AD, Thornton KR. Abundance and distribution of transposable elements in two Drosophila QTL mapping resources. Mol Biol Evol. 2013;30(10):2311–27. doi: 10.1093/molbev/mst129 23883524; PubMed Central PMCID: PMC3773372.
55. Karasov T, Messer PW, Petrov DA. Evidence that adaptation in Drosophila is not limited by mutation at single sites. PLoS Genet. 2010;6(6):e1000924. doi: 10.1371/journal.pgen.1000924 20585551; PubMed Central PMCID: PMC2887467.
56. Magwire MM, Bayer F, Webster CL, Cao C, Jiggins FM. Successive increases in the resistance of Drosophila to viral infection through a transposon insertion followed by a Duplication. PLoS Genet. 2011;7(10):e1002337. doi: 10.1371/journal.pgen.1002337 22028673; PubMed Central PMCID: PMC3197678.
57. Schmidt JM, Good RT, Appleton B, Sherrard J, Raymant GC, Bogwitz MR, et al. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genet. 2010;6(6):e1000998. doi: 10.1371/journal.pgen.1000998 20585622; PubMed Central PMCID: PMC2891717.
58. Ezawa K, S OO, Saitou N, Investigators ST-NY. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Genome-wide search of gene conversions in duplicated genes of mouse and rat. Mol Biol Evol. 2006;23(5):927–40. doi: 10.1093/molbev/msj093 16407460.
59. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. Epub 2009/05/20. doi: 10.1093/bioinformatics/btp324 19451168; PubMed Central PMCID: PMC2705234.
60. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. doi: 10.1038/nmeth.1923 22388286; PubMed Central PMCID: PMC3322381.
61. Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12(8):R72. doi: 10.1186/gb-2011-12-8-r72 21835007; PubMed Central PMCID: PMC3245612.
62. Rogers RL, Shao L, Sanjak JS, Andolfatto P, Thornton KR. Revised annotations, sex-biased expression, and lineage-specific genes in the Drosophila melanogaster group. G3 (Bethesda). 2014;4(12):2345–51. Epub 2014/10/03. doi: 10.1534/g3.114.013532 25273863; PubMed Central PMCID: PMC4267930.
63. Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. doi: 10.1093/nar/gkn923 19033363; PubMed Central PMCID: PMC2615629.
64. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols. 2009;4(1):44–57. doi: 10.1038/nprot.2008.211 19131956
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 9
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Souvislost haplotypu M2 genu pro annexin A5 s opakovanými reprodukčními ztrátami
- Akutní intermitentní porfyrie
- Hodnota lidského choriového gonadotropinu v časném stadiu gravidity po IVF – asociace s rozvojem preeklampsie?
Nejčtenější v tomto čísle
- Origins of DNA replication
- Environmental and epigenetic regulation of Rider retrotransposons in tomato
- Evolution of the Auxin Response Factors from charophyte ancestors
- Integrating transcriptomic network reconstruction and eQTL analyses reveals mechanistic connections between genomic architecture and Brassica rapa development