The evolution and functional divergence of the histone H2B family in plants
Autoři:
Danhua Jiang aff001; Michael Borg aff001; Zdravko J. Lorković aff001; Sean A. Montgomery aff001; Akihisa Osakabe aff001; Ramesh Yelagandula aff001; Elin Axelsson aff001; Frédéric Berger aff001
Působiště autorů:
Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse, Vienna, Austria
aff001; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
aff002; University of Chinese Academy of Sciences, Beijing, China
aff003
Vyšlo v časopise:
The evolution and functional divergence of the histone H2B family in plants. PLoS Genet 16(7): e32767. doi:10.1371/journal.pgen.1008964
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008964
Souhrn
Chromatin regulation of eukaryotic genomes depends on the formation of nucleosome complexes between histone proteins and DNA. Histone variants, which are diversified by sequence or expression pattern, can profoundly alter chromatin properties. While variants in histone H2A and H3 families are well characterized, the extent of diversification of histone H2B proteins is less understood. Here, we report a systematic analysis of the histone H2B family in plants, which have undergone substantial divergence during the evolution of each major group in the plant kingdom. By characterising Arabidopsis H2Bs, we substantiate this diversification and reveal potential functional specialization that parallels the phylogenetic structure of emergent clades in eudicots. In addition, we identify a new class of highly divergent H2B variants, H2B.S, that specifically accumulate during chromatin compaction of dry seed embryos in multiple species of flowering plants. Our findings thus identify unsuspected diverse properties among histone H2B proteins in plants that has manifested into potentially novel groups of histone variants.
Klíčová slova:
Arabidopsis thaliana – Flowering plants – Histones – Chromatin – Nucleosomes – Pollen – Seeds – Sperm
Zdroje
1. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–60. doi: 10.1038/38444 9305837.
2. Filipescu D, Muller S, Almouzni G. Histone H3 variants and their chaperones during development and disease: contributing to epigenetic control. Annual review of cell and developmental biology. 2014;30:615–46. doi: 10.1146/annurev-cellbio-100913-013311 25288118.
3. MacAlpine DM, Almouzni G. Chromatin and DNA replication. Cold Spring Harbor perspectives in biology. 2013;5(8):a010207. doi: 10.1101/cshperspect.a010207 23751185; PubMed Central PMCID: PMC3721285.
4. Venkatesh S, Workman JL. Histone exchange, chromatin structure and the regulation of transcription. Nature reviews Molecular cell biology. 2015;16(3):178–89. doi: 10.1038/nrm3941 25650798.
5. Talbert PB, Ahmad K, Almouzni G, Ausio J, Berger F, Bhalla PL, et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics & chromatin. 2012;5:7. doi: 10.1186/1756-8935-5-7 22650316; PubMed Central PMCID: PMC3380720.
6. Talbert PB, Henikoff S. Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol. 2017;18(2):115–26. doi: 10.1038/nrm.2016.148 27924075.
7. Bonisch C, Hake SB. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res. 2012;40(21):10719–41. Epub 2012/09/25. doi: 10.1093/nar/gks865 23002134; PubMed Central PMCID: PMC3510494.
8. Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nature reviews Molecular cell biology. 2017;18(5):299–314. doi: 10.1038/nrm.2016.166 28144029.
9. Jiang D, Berger F. Histone variants in plant transcriptional regulation. Biochimica et biophysica acta Gene regulatory mechanisms. 2017;1860(1):123–30. doi: 10.1016/j.bbagrm.2016.07.002 27412913.
10. Jiang D, Berger F. DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science. 2017;357(6356):1146–9. doi: 10.1126/science.aan4965 28818970.
11. Mendiratta S, Gatto A, Almouzni G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. The Journal of cell biology. 2019;218(1):39–54. doi: 10.1083/jcb.201807179 30257851; PubMed Central PMCID: PMC6314538.
12. Stroud H, Otero S, Desvoyes B, Ramirez-Parra E, Jacobsen SE, Gutierrez C. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2012;109(14):5370–5. Epub 2012/03/21. doi: 10.1073/pnas.1203145109 22431625; PubMed Central PMCID: PMC3325649.
13. Szenker E, Ray-Gallet D, Almouzni G. The double face of the histone variant H3.3. Cell research. 2011;21(3):421–34. doi: 10.1038/cr.2011.14 21263457; PubMed Central PMCID: PMC3193428.
14. Wollmann H, Holec S, Alden K, Clarke ND, Jacques PE, Berger F. Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome. PLoS Genet. 2012;8(5):e1002658. Epub 2012/05/10. doi: 10.1371/journal.pgen.1002658 22570629; PubMed Central PMCID: PMC3342937.
15. Wollmann H, Stroud H, Yelagandula R, Tarutani Y, Jiang D, Jing L, et al. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana. Genome biology. 2017;18(1):94. doi: 10.1186/s13059-017-1221-3 28521766; PubMed Central PMCID: PMC5437678.
16. Fukagawa T, Earnshaw WC. The centromere: chromatin foundation for the kinetochore machinery. Developmental cell. 2014;30(5):496–508. doi: 10.1016/j.devcel.2014.08.016 25203206; PubMed Central PMCID: PMC4160344.
17. Borg M, Berger F. Chromatin remodelling during male gametophyte development. The Plant journal: for cell and molecular biology. 2015;83(1):177–88. doi: 10.1111/tpj.12856 25892182.
18. Ingouff M, Berger F. Histone3 variants in plants. Chromosoma. 2010;119(1):27–33. doi: 10.1007/s00412-009-0237-1 19701762.
19. Borg M, Jacob Y, Susaki D, LeBlanc C, Buendia D, Axelsson E, et al. Targeted reprogramming of H3K27me3 resets epigenetic memory in plant paternal chromatin. Nature cell biology. 2020. doi: 10.1038/s41556-020-0515-y 32393884.
20. Ingouff M, Hamamura Y, Gourgues M, Higashiyama T, Berger F. Distinct dynamics of HISTONE3 variants between the two fertilization products in plants. Current biology: CB. 2007;17(12):1032–7. doi: 10.1016/j.cub.2007.05.019 17555967.
21. Okada T, Endo M, Singh MB, Bhalla PL. Analysis of the histone H3 gene family in Arabidopsis and identification of the male-gamete-specific variant AtMGH3. The Plant journal: for cell and molecular biology. 2005;44(4):557–68. doi: 10.1111/j.1365-313X.2005.02554.x 16262706.
22. Yan A, Borg M, Berger F, Chen Z. The atypical histone variant H3.15 promotes callus formation in Arabidopsis thaliana. Development. 2020;147(11). Epub 2020/05/23. doi: 10.1242/dev.184895 32439757.
23. Kujirai T, Horikoshi N, Sato K, Maehara K, Machida S, Osakabe A, et al. Structure and function of human histone H3.Y nucleosome. Nucleic acids research. 2016;44(13):6127–41. doi: 10.1093/nar/gkw202 27016736; PubMed Central PMCID: PMC5291245.
24. Urahama T, Harada A, Maehara K, Horikoshi N, Sato K, Sato Y, et al. Histone H3.5 forms an unstable nucleosome and accumulates around transcription start sites in human testis. Epigenetics & chromatin. 2016;9:2. doi: 10.1186/s13072-016-0051-y 26779285; PubMed Central PMCID: PMC4714512.
25. Giaimo BD, Ferrante F, Herchenrother A, Hake SB, Borggrefe T. The histone variant H2A.Z in gene regulation. Epigenetics & chromatin. 2019;12(1):37. doi: 10.1186/s13072-019-0274-9 31200754; PubMed Central PMCID: PMC6570943.
26. Turinetto V, Giachino C. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions. Nucleic acids research. 2015;43(5):2489–98. doi: 10.1093/nar/gkv061 25712102; PubMed Central PMCID: PMC4357700.
27. Gamble MJ, Kraus WL. Multiple facets of the unique histone variant macroH2A: from genomics to cell biology. Cell cycle. 2010;9(13):2568–74. doi: 10.4161/cc.9.13.12144 20543561.
28. Sun Z, Bernstein E. Histone variant macroH2A: from chromatin deposition to molecular function. Essays in biochemistry. 2019;63(1):59–74. doi: 10.1042/EBC20180062 31015383.
29. Kawashima T, Lorkovic ZJ, Nishihama R, Ishizaki K, Axelsson E, Yelagandula R, et al. Diversification of histone H2A variants during plant evolution. Trends in plant science. 2015;20(7):419–25. doi: 10.1016/j.tplants.2015.04.005 25983206.
30. Lorkovic ZJ, Park C, Goiser M, Jiang D, Kurzbauer MT, Schlogelhofer P, et al. Compartmentalization of DNA Damage Response between Heterochromatin and Euchromatin Is Mediated by Distinct H2A Histone Variants. Curr Biol. 2017;27(8):1192–9. doi: 10.1016/j.cub.2017.03.002 28392109.
31. Yelagandula R, Stroud H, Holec S, Zhou K, Feng S, Zhong X, et al. The histone variant H2A.W defines heterochromatin and promotes chromatin condensation in Arabidopsis. Cell. 2014;158(1):98–109. doi: 10.1016/j.cell.2014.06.006 24995981; PubMed Central PMCID: PMC4671829.
32. Ishibashi T, Li A, Eirin-Lopez JM, Zhao M, Missiaen K, Abbott DW, et al. H2A.Bbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis. Nucleic acids research. 2010;38(6):1780–9. doi: 10.1093/nar/gkp1129 20008104; PubMed Central PMCID: PMC2847216.
33. Soboleva TA, Nekrasov M, Pahwa A, Williams R, Huttley GA, Tremethick DJ. A unique H2A histone variant occupies the transcriptional start site of active genes. Nature structural & molecular biology. 2011;19(1):25–30. doi: 10.1038/nsmb.2161 22139013.
34. Molaro A, Young JM, Malik HS. Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals. Genome research. 2018;28(4):460–73. doi: 10.1101/gr.229799.117 29549088; PubMed Central PMCID: PMC5880237.
35. Shaytan AK, Landsman D, Panchenko AR. Nucleosome adaptability conferred by sequence and structural variations in histone H2A-H2B dimers. Current opinion in structural biology. 2015;32:48–57. doi: 10.1016/j.sbi.2015.02.004 25731851; PubMed Central PMCID: PMC4512853.
36. Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes & development. 2013;27(15):1680–92. doi: 10.1101/gad.220095.113 23884607; PubMed Central PMCID: PMC3744726.
37. Boulard M, Gautier T, Mbele GO, Gerson V, Hamiche A, Angelov D, et al. The NH2 tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Molecular and cellular biology. 2006;26(4):1518–26. doi: 10.1128/MCB.26.4.1518-1526.2006 16449661; PubMed Central PMCID: PMC1367197.
38. Govin J, Escoffier E, Rousseaux S, Kuhn L, Ferro M, Thevenon J, et al. Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. The Journal of cell biology. 2007;176(3):283–94. doi: 10.1083/jcb.200604141 17261847; PubMed Central PMCID: PMC2063955.
39. Santoro SW, Dulac C. The activity-dependent histone variant H2BE modulates the life span of olfactory neurons. eLife. 2012;1:e00070. doi: 10.7554/eLife.00070 23240083; PubMed Central PMCID: PMC3510456.
40. Bergmuller E, Gehrig PM, Gruissem W. Characterization of post-translational modifications of histone H2B-variants isolated from Arabidopsis thaliana. Journal of proteome research. 2007;6(9):3655–68. doi: 10.1021/pr0702159 17691833.
41. Zhang K, Sridhar VV, Zhu J, Kapoor A, Zhu JK. Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PloS one. 2007;2(11):e1210. doi: 10.1371/journal.pone.0001210 18030344; PubMed Central PMCID: PMC2075165.
42. Draizen EJ, Shaytan AK, Marino-Ramirez L, Talbert PB, Landsman D, Panchenko AR. HistoneDB 2.0: a histone database with variants—an integrated resource to explore histones and their variants. Database: the journal of biological databases and curation. 2016;2016. doi: 10.1093/database/baw014 26989147; PubMed Central PMCID: PMC4795928.
43. Felsenstein J. Cases in which Parsimony or Compatibility Methods Will be Positively Misleading. Systematic Zoology. 1978;27:401–10.
44. Hendy MD, Penny D. A Framework for the Quantitative Study of Evolutionary Trees. Systematic biology. 1989;38(4):297–309.
45. Henikoff S, Smith MM. Histone variants and epigenetics. Cold Spring Harbor perspectives in biology. 2015;7(1):a019364. doi: 10.1101/cshperspect.a019364 25561719; PubMed Central PMCID: PMC4292162.
46. Ueda K, Kinoshita Y, Xu ZJ, Ide N, Ono M, Akahori Y, et al. Unusual core histones specifically expressed in male gametic cells of Lilium longiflorum. Chromosoma. 2000;108(8):491–500. doi: 10.1007/s004120050401 10794571.
47. Yang H, Yang N, Wang T. Proteomic analysis reveals the differential histone programs between male germline cells and vegetative cells in Lilium davidii. The Plant journal: for cell and molecular biology. 2016;85(5):660–74. doi: 10.1111/tpj.13133 26846354.
48. van Zanten M, Koini MA, Geyer R, Liu Y, Brambilla V, Bartels D, et al. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(50):20219–24. doi: 10.1073/pnas.1117726108 22123962; PubMed Central PMCID: PMC3250172.
49. Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, et al. Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Advances in bioinformatics. 2008;2008:420747. doi: 10.1155/2008/420747 19956698; PubMed Central PMCID: PMC2777001.
50. Tachiwana H, Kagawa W, Osakabe A, Kawaguchi K, Shiga T, Hayashi-Takanaka Y, et al. Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(23):10454–9. doi: 10.1073/pnas.1003064107 20498094; PubMed Central PMCID: PMC2890842.
51. Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, et al. Relationship between nucleosome positioning and DNA methylation. Nature. 2010;466(7304):388–92. doi: 10.1038/nature09147 20512117; PubMed Central PMCID: PMC2964354.
52. Filipescu D, Szenker E, Almouzni G. Developmental roles of histone H3 variants and their chaperones. Trends in genetics: TIG. 2013;29(11):630–40. doi: 10.1016/j.tig.2013.06.002 23830582.
53. Gauthier NP, Jensen LJ, Wernersson R, Brunak S, Jensen TS. Cyclebase.org: version 2.0, an updated comprehensive, multi-species repository of cell cycle experiments and derived analysis results. Nucleic acids research. 2010;38(Database issue):D699–702. doi: 10.1093/nar/gkp1044 19934261; PubMed Central PMCID: PMC2808877.
54. Henley SA, Dick FA. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell division. 2012;7(1):10. doi: 10.1186/1747-1028-7-10 22417103; PubMed Central PMCID: PMC3325851.
55. Desvoyes B, de Mendoza A, Ruiz-Trillo I, Gutierrez C. Novel roles of plant RETINOBLASTOMA-RELATED (RBR) protein in cell proliferation and asymmetric cell division. Journal of experimental botany. 2014;65(10):2657–66. doi: 10.1093/jxb/ert411 24323507; PubMed Central PMCID: PMC4557542.
56. Higo A, Niwa M, Yamato KT, Yamada L, Sawada H, Sakamoto T, et al. Transcriptional Framework of Male Gametogenesis in the Liverwort Marchantia polymorpha L. Plant & cell physiology. 2016;57(2):325–38. doi: 10.1093/pcp/pcw005 26858289.
57. Gonzalez-Romero R, Rivera-Casas C, Ausio J, Mendez J, Eirin-Lopez JM. Birth-and-death long-term evolution promotes histone H2B variant diversification in the male germinal cell line. Molecular biology and evolution. 2010;27(8):1802–12. doi: 10.1093/molbev/msq058 20194426.
58. Feng J, Shen WH. Dynamic regulation and function of histone monoubiquitination in plants. Frontiers in plant science. 2014;5:83. doi: 10.3389/fpls.2014.00083 24659991; PubMed Central PMCID: PMC3952079.
59. Kim J, Kim JA, McGinty RK, Nguyen UT, Muir TW, Allis CD, et al. The n-SET domain of Set1 regulates H2B ubiquitylation-dependent H3K4 methylation. Molecular cell. 2013;49(6):1121–33. doi: 10.1016/j.molcel.2013.01.034 23453808; PubMed Central PMCID: PMC3615140.
60. Wu L, Lee SY, Zhou B, Nguyen UT, Muir TW, Tan S, et al. ASH2L regulates ubiquitylation signaling to MLL: trans-regulation of H3 K4 methylation in higher eukaryotes. Molecular cell. 2013;49(6):1108–20. doi: 10.1016/j.molcel.2013.01.033 23453805; PubMed Central PMCID: PMC3615107.
61. Ramachandran S, Henikoff S. Replicating Nucleosomes. Science advances. 2015;1(7). doi: 10.1126/sciadv.1500587 26269799; PubMed Central PMCID: PMC4530793.
62. Lu L, Chen X, Qian S, Zhong X. The plant-specific histone residue Phe41 is important for genome-wide H3.1 distribution. Nature communications. 2018;9(1):630. doi: 10.1038/s41467-018-02976-9 29434220; PubMed Central PMCID: PMC5809374.
63. Chen Z, Higgins JD, Hui JT, Li J, Franklin FC, Berger F. Retinoblastoma protein is essential for early meiotic events in Arabidopsis. The EMBO journal. 2011;30(4):744–55. doi: 10.1038/emboj.2010.344 21217641; PubMed Central PMCID: PMC3041947.
64. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution. 2013;30(4):772–80. doi: 10.1093/molbev/mst010 23329690; PubMed Central PMCID: PMC3603318.
65. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27(8):1164–5. doi: 10.1093/bioinformatics/btr088 21335321; PubMed Central PMCID: PMC5215816.
66. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology. 2010;59(3):307–21. doi: 10.1093/sysbio/syq010 20525638.
67. Hordijk W, Gascuel O. Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood. Bioinformatics. 2005;21(24):4338–47. doi: 10.1093/bioinformatics/bti713 16234323.
68. Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34(Web Server issue):W609–12. Epub 2006/07/18. doi: 10.1093/nar/gkl315 16845082; PubMed Central PMCID: PMC1538804.
69. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13(5):555–6. Epub 1997/11/21. doi: 10.1093/bioinformatics/13.5.555 9367129.
70. Kawashima T, Maruyama D, Shagirov M, Li J, Hamamura Y, Yelagandula R, et al. Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana. eLife. 2014;3. doi: 10.7554/eLife.04501 25303363; PubMed Central PMCID: PMC4221737.
71. Borg M, Rutley N, Kagale S, Hamamura Y, Gherghinoiu M, Kumar S, et al. An EAR-Dependent Regulatory Module Promotes Male Germ Cell Division and Sperm Fertility in Arabidopsis. The Plant cell. 2014;26(5):2098–113. doi: 10.1105/tpc.114.124743 24876252; PubMed Central PMCID: PMC4079371.
72. Dorfer V, Pichler P, Stranzl T, Stadlmann J, Taus T, Winkler S, et al. MS Amanda, a universal identification algorithm optimized for high accuracy tandem mass spectra. J Proteome Res. 2014;13(8):3679–84. doi: 10.1021/pr500202e 24909410; PubMed Central PMCID: PMC4119474.
73. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, et al. Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res. 2011;10(12):5354–62. doi: 10.1021/pr200611n 22073976.
74. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature methods. 2012;9(4):357–9. doi: 10.1038/nmeth.1923 22388286; PubMed Central PMCID: PMC3322381.
75. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. doi: 10.1093/bioinformatics/btp352 19505943; PubMed Central PMCID: PMC2723002.
76. Ramirez F, Dundar F, Diehl S, Gruning BA, Manke T. deepTools: a flexible platform for exploring deep-sequencing data. Nucleic acids research. 2014;42(Web Server issue):W187–91. doi: 10.1093/nar/gku365 24799436; PubMed Central PMCID: PMC4086134.
77. Gu Z, Eils R, Schlesner M, Ishaque N. EnrichedHeatmap: an R/Bioconductor package for comprehensive visualization of genomic signal associations. BMC genomics. 2018;19(1):234. doi: 10.1186/s12864-018-4625-x 29618320; PubMed Central PMCID: PMC5885322.
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 7
- Může hubnutí souviset s vyšším rizikem nádorových onemocnění?
- Raději si zajděte na oční! Jak souvisí citlivost zraku s rozvojem demence?
- Co způsobuje pooperační infekce? Na vině může být i naše vlastní mikrobiota
- Čeká nás průlom v diagnostice karcinomu pankreatu?
- Polibek, který mi „vzal nohy“ aneb vzácný výskyt EBV u 70leté ženy – kazuistika
Nejčtenější v tomto čísle
- Holocentric chromosomes
- Repression of tick microRNA-133 induces organic anion transporting polypeptide expression critical for Anaplasma phagocytophilum survival in the vector and transmission to the vertebrate host
- A FAS solution to a DEAD case
- Brassinosteroids regulate root meristem development by mediating BIN2-UPB1 module in Arabidopsis