#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

A non-canonical RNAi pathway controls virulence and genome stability in Mucorales


Autoři: Carlos Pérez-Arques aff001;  María Isabel Navarro-Mendoza aff001;  Laura Murcia aff001;  Eusebio Navarro aff001;  Victoriano Garre aff001;  Francisco Esteban Nicolás aff001
Působiště autorů: Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia, Spain aff001
Vyšlo v časopise: A non-canonical RNAi pathway controls virulence and genome stability in Mucorales. PLoS Genet 16(7): e32767. doi:10.1371/journal.pgen.1008611
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008611

Souhrn

Epimutations in fungal pathogens are emerging as novel phenomena that could explain the fast-developing resistance to antifungal drugs and other stresses. These epimutations are generated by RNA interference (RNAi) mechanisms that transiently silence specific genes to overcome stressful stimuli. The early-diverging fungus Mucor circinelloides exercises a fine control over two interacting RNAi pathways to produce epimutants: the canonical RNAi pathway and a new RNAi degradative pathway. The latter is considered a non-canonical RNAi pathway (NCRIP) because it relies on RNA-dependent RNA polymerases (RdRPs) and a novel ribonuclease III-like named R3B2 to degrade target transcripts. Here in this work, we uncovered the role of NCRIP in regulating virulence processes and transposon movements through key components of the pathway, RdRP1 and R3B2. Mutants in these genes are unable to launch a proper virulence response to macrophage phagocytosis, resulting in a decreased virulence potential. The transcriptomic profile of rdrp1Δ and r3b2Δ mutants revealed a pre-exposure adaptation to the stressful phagosomal environment even when the strains are not confronted by macrophages. These results suggest that NCRIP represses key targets during regular growth and releases its control when a stressful environment challenges the fungus. NCRIP interacts with the RNAi canonical core to protect genome stability by controlling the expression of centromeric retrotransposable elements. In the absence of NCRIP, these retrotransposons are robustly repressed by the canonical RNAi machinery; thus, supporting the antagonistic role of NCRIP in containing the epimutational pathway. Both interacting RNAi pathways might be essential to govern host-pathogen interactions through transient adaptations, contributing to the unique traits of the emerging infection mucormycosis.

Klíčová slova:

Antimicrobial resistance – Gene expression – Gene regulation – Macrophages – Mutant strains – Phagocytosis – RNA interference – Transposable elements – Fungal genetics


Zdroje

1. Petrikkos G, Skiada A, Lortholary O, Roilides E, Walsh TJ, Kontoyiannis DP. Epidemiology and clinical manifestations of mucormycosis. Clin Infect Dis. 2012;54 Suppl 1: S23–34. doi: 10.1093/cid/cir866 22247442

2. Hassan MIA, Voigt K. Pathogenicity patterns of mucormycosis: Epidemiology, interaction with immune cells and virulence factors. Med Mycol. 2019;57: S245–S256. doi: 10.1093/mmy/myz011 30816980

3. Calo S, Shertz-Wall C, Lee SC, Bastidas RJ, Nicolás FE, Granek JA, et al. Antifungal drug resistance evoked via RNAi-dependent epimutations. Nature. 2014;513: 555–558. doi: 10.1038/nature13575 25079329

4. Chang Z, Billmyre RB, Lee SC, Heitman J. Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides. PLoS Genet. 2019;15: e1007957. doi: 10.1371/journal.pgen.1007957 30742617

5. Chang Z, Heitman J. Drug-resistant epimutants exhibit organ-specific stability and induction during murine infections caused by the human fungal pathogen Mucor circinelloides. mBio. 2019;10: 1–11. doi: 10.1128/mBio.02579-19 31690679

6. Torres-Martínez S, Ruiz-Vázquez RM. RNAi pathways in Mucor: A tale of proteins, small RNAs and functional diversity. Fungal Genet Biol. 2016;90: 44–52. doi: 10.1016/j.fgb.2015.11.006 26593631

7. Nicolás FE, Torres-Martínez S, Ruiz-Vázquez RM. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. EMBO J. 2003;22: 3983–3991. doi: 10.1093/emboj/cdg384 12881432

8. Nicolás FE, Vila A, Moxon S, Cascales MD, Torres-Martínez S, Ruiz-Vázquez RM, et al. The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides. BMC Genomics. 2015;16: 237. doi: 10.1186/s12864-015-1443-2 25880254

9. Calo S, Nicolás FE, Lee SC, Vila A, Cervantes M, Torres-Martinez S, et al. A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides. PLoS Genet. 2017;13: e1006686. doi: 10.1371/journal.pgen.1006686 28339467

10. Trieu TA, Calo S, Nicolás FE, Vila A, Moxon S, Dalmay T, et al. A non-canonical RNA silencing pathway promotes mRNA degradation in basal fungi. PLoS Genet. 2015;11: e1005168. doi: 10.1371/journal.pgen.1005168 25875805

11. Wang X, Hsueh Y-P, Li W, Floyd A, Skalsky R, Heitman J. Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes Dev. 2010;24: 2566–2582. doi: 10.1101/gad.1970910 21078820

12. Navarro-Mendoza MI, Pérez-Arques C, Panchal S, Nicolás FE, Mondo SJ, Ganguly P, et al. Early diverging fungus Mucor circinelloides lacks centromeric histone CENP-A and displays a mosaic of point and regional centromeres. Curr Biol. 2019; 1–12. doi: 10.1016/j.cub.2019.09.024 31679929

13. Pérez-Arques C, Navarro-Mendoza MI, Murcia L, Lax C, Martínez-García P, Heitman J, et al. Mucor circinelloides thrives inside the phagosome through an Atf-mediated germination pathway. mBio. 2019;10: 1–15. doi: 10.1128/mBio.02765-18 30723131

14. Casadevall A. Determinants of virulence in the pathogenic fungi. Fungal Biol Rev. 2007;21: 130–132. doi: 10.1016/j.fbr.2007.02.007 19513186

15. Jacobsen ID. Animal models to study mucormycosis. J Fungi. 2019;5: 1–22. doi: 10.3390/jof5020027 30934788

16. Trieu TA, Navarro-Mendoza MI, Pérez-Arques C, Sanchis M, Capilla J, Navarro-Rodriguez P, et al. RNAi-based functional genomics identifies new virulence determinants in mucormycosis. PLoS Pathog. 2017;13: e1006150. doi: 10.1371/journal.ppat.1006150 28107502

17. Nicolas FE, Moxon S, de Haro JP, Calo S, Grigoriev I V., Torres-Martínez S, et al. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic Acids Res. 2010;38: 5535–5541. doi: 10.1093/nar/gkq301 20427422

18. Navarro-Mendoza MI, Pérez-Arques C, Murcia L, Martínez-García P, Lax C, Sanchis M, et al. Components of a new gene family of ferroxidases involved in virulence are functionally specialized in fungal dimorphism. Sci Rep. 2018;8: 7660. doi: 10.1038/s41598-018-26051-x 29769603

19. Andrianaki AM, Kyrmizi I, Thanopoulou K, Baldin C, Drakos E, Soliman SSM, et al. Iron restriction inside macrophages regulates pulmonary host defense against Rhizopus species. Nat Commun. 2018;9: 3333. doi: 10.1038/s41467-018-05820-2 30127354

20. Shiu PKT, Raju NB, Zickler D, Metzenberg RL. Meiotic silencing by unpaired DNA. Cell. 2001;107: 905–916. doi: 10.1016/s0092-8674(01)00609-2 11779466

21. Ramakrishnan M, Sowjanya TN, Raj KB, Kasbekar DP. Meiotic silencing by unpaired DNA is expressed more strongly in the early than the late perithecia of crosses involving most wild-isolated Neurospora crassa strains and in self-crosses of N. tetrasperma. Fungal Genet Biol. 2011;48: 1146–52. doi: 10.1016/j.fgb.2011.10.002 22056520

22. Son H, Min K, Lee J, Raju NB, Lee Y-W. Meiotic silencing in the homothallic fungus Gibberella zeae. Fungal Biol. 2011;115: 1290–302. doi: 10.1016/j.funbio.2011.09.006 22115448

23. Wang Y, Smith KM, Taylor JW, Freitag M, Stajich JE. Endogenous small RNA mediates meiotic silencing of a novel DNA transposon. G3 (Genes, Genomes, Genet). 2015;5: 1949–60. doi: 10.1534/g3.115.017921 26109355

24. Roncero MI. Enrichment method for the isolation of auxotrophic mutants of Mucor using the polyene antibiotic N-glycosyl-polifungin. Carlsberg Res Commun. 1984;49: 685–690. doi: 10.1007/bf02907499

25. Calo S, Nicolás FE, Vila A, Torres-Martínez S, Ruiz-Vázquez RM. Two distinct RNA-dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus Mucor circinelloides. Mol Microbiol. 2012;83: 379–394. doi: 10.1111/j.1365-2958.2011.07939.x 22141923

26. Roncero MIG, Jepsen LP, Strøman P, van Heeswijck R. Characterization of a leuA gene and an ARS element from Mucor circinelloides. Gene. 1989;84: 335–343. doi: 10.1016/0378-1119(89)90508-8 2693214

27. López-Fernández L, Sanchis M, Navarro-Rodríguez P, Nicolás FE, Silva-Franco F, Guarro J, et al. Understanding Mucor circinelloides pathogenesis by comparative genomics and phenotypical studies. Virulence. 2018;1: 707–720. doi: 10.1080/21505594.2018.1435249 29436903

28. Nicolás FE, Navarro-Mendoza MI, Pérez-Arques C, López-García S, Navarro E, Torres-Martínez S, et al. Molecular tools for carotenogenesis analysis in the mucoral Mucor circinelloides. En: Barreiro C, Barredo JL, editores. Microbial Carotenoids Methods in Molecular Biology. Humana Press, New York, NY; 2018. doi: 10.1007/978-1-4939-8742-9_13 30109634

29. Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, et al. Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol. 2016;26: 1577–1584. doi: 10.1016/j.cub.2016.04.038 27238284

30. Dobin A, Gingeras TR. Mapping RNA-seq Reads with STAR. Current Protocols in Bioinformatics. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2015. pp. 11.14.1–11.14.19. doi: 10.1002/0471250953.bi1114s51 26334920

31. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31: 166–169. doi: 10.1093/bioinformatics/btu638 25260700

32. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43: e47–e47. doi: 10.1093/nar/gkv007 25605792

33. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34: 2115–2122. doi: 10.1093/molbev/msx148 28460117

34. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47: D309–D314. doi: 10.1093/nar/gky1085 30418610

35. Dixon GB, Davies SW, Aglyamova G V., Meyer E, Bay LK, Matz M V. Genomic determinants of coral heat tolerance across latitudes. Science. 2015;348: 1460–1462. doi: 10.1126/science.1261224 26113720

36. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25: 1754–1760. doi: 10.1093/bioinformatics/btp324 19451168

37. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25: 2078–2079. doi: 10.1093/bioinformatics/btp352 19505943

38. Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44: W160–W165. doi: 10.1093/nar/gkw257 27079975

39. Crooks GE, Hon G, Chandonia J-M, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004;14: 1188–90. doi: 10.1101/gr.849004 15173120


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 7
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

plice
INSIGHTS from European Respiratory Congress
nový kurz

Současné pohledy na riziko v parodontologii
Autoři: MUDr. Ladislav Korábek, CSc., MBA

Svět praktické medicíny 3/2024 (znalostní test z časopisu)

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#