CRL4Cdt2 ubiquitin ligase regulates Dna2 and Rad16 (XPF) nucleases by targeting Pxd1 for degradation
Autoři:
Jia-Min Zhang aff001; Jin-Xin Zheng aff001; Yue-He Ding aff001; Xiao-Ran Zhang aff001; Fang Suo aff001; Jing-Yi Ren aff001; Meng-Qiu Dong aff001; Li-Lin Du aff001
Působiště autorů:
National Institute of Biological Sciences, Beijing, China
aff001; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
aff002
Vyšlo v časopise:
CRL4Cdt2 ubiquitin ligase regulates Dna2 and Rad16 (XPF) nucleases by targeting Pxd1 for degradation. PLoS Genet 16(7): e32767. doi:10.1371/journal.pgen.1008933
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008933
Souhrn
Structure-specific endonucleases (SSEs) play key roles in DNA replication, recombination, and repair. SSEs must be tightly regulated to ensure genome stability but their regulatory mechanisms remain incompletely understood. Here, we show that in the fission yeast Schizosaccharomyces pombe, the activities of two SSEs, Dna2 and Rad16 (ortholog of human XPF), are temporally controlled during the cell cycle by the CRL4Cdt2 ubiquitin ligase. CRL4Cdt2 targets Pxd1, an inhibitor of Dna2 and an activator of Rad16, for degradation in S phase. The ubiquitination and degradation of Pxd1 is dependent on CRL4Cdt2, PCNA, and a PCNA-binding degron motif on Pxd1. CRL4Cdt2-mediated Pxd1 degradation prevents Pxd1 from interfering with the normal S-phase functions of Dna2. Moreover, Pxd1 degradation leads to a reduction of Rad16 nuclease activity in S phase, and restrains Rad16-mediated single-strand annealing, a hazardous pathway of repairing double-strand breaks. These results demonstrate a new role of the CRL4Cdt2 ubiquitin ligase in genome stability maintenance and shed new light on how SSE activities are regulated during the cell cycle.
Klíčová slova:
Cell cycle and cell division – DNA replication – Nucleases – Repeated sequences – Schizosaccharomyces pombe – Substitution mutation – Synthesis phase – Ubiquitination – DNA repair – Genomics
Zdroje
1. Schwartz E.K. and Heyer W.D. (2011) Processing of joint molecule intermediates by structure-selective endonucleases during homologous recombination in eukaryotes. Chromosoma, 120, 109–127. doi: 10.1007/s00412-010-0304-7 21369956
2. Zheng L. and Shen B. (2011) Okazaki fragment maturation: nucleases take centre stage. Journal of molecular cell biology, 3, 23–30. doi: 10.1093/jmcb/mjq048 21278448
3. Dehe P.M. and Gaillard P.H. (2017) Control of structure-specific endonucleases to maintain genome stability. Nature reviews. Molecular cell biology, 18, 315–330. doi: 10.1038/nrm.2016.177 28327556
4. Kim S.M. and Forsburg S.L. (2018) Regulation of Structure-Specific Endonucleases in Replication Stress. Genes, 9, 634.
5. Andersen S.L., Bergstralh D.T., Kohl K.P., LaRocque J.R., Moore C.B. and Sekelsky J. (2009) Drosophila MUS312 and the vertebrate ortholog BTBD12 interact with DNA structure-specific endonucleases in DNA repair and recombination. Molecular cell, 35, 128–135. doi: 10.1016/j.molcel.2009.06.019 19595722
6. Fekairi S., Scaglione S., Chahwan C., Taylor E.R., Tissier A., Coulon S., Dong M.Q., Ruse C., Yates J.R. 3rd, Russell P. et al. (2009) Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell, 138, 78–89. doi: 10.1016/j.cell.2009.06.029 19596236
7. Munoz I.M., Hain K., Declais A.C., Gardiner M., Toh G.W., Sanchez-Pulido L., Heuckmann J.M., Toth R., Macartney T., Eppink B. et al. (2009) Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Molecular cell, 35, 116–127. doi: 10.1016/j.molcel.2009.06.020 19595721
8. Svendsen J.M., Smogorzewska A., Sowa M.E., O'Connell B.C., Gygi S.P., Elledge S.J. and Harper J.W. (2009) Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell, 138, 63–77. doi: 10.1016/j.cell.2009.06.030 19596235
9. Hodskinson M.R., Silhan J., Crossan G.P., Garaycoechea J.I., Mukherjee S., Johnson C.M., Scharer O.D. and Patel K.J. (2014) Mouse SLX4 is a tumor suppressor that stimulates the activity of the nuclease XPF-ERCC1 in DNA crosslink repair. Molecular cell, 54, 472–484. doi: 10.1016/j.molcel.2014.03.014 24726326
10. Wyatt H.D., Laister R.C., Martin S.R., Arrowsmith C.H. and West S.C. (2017) The SMX DNA Repair Tri-nuclease. Molecular cell, 65, 848–860 e811. doi: 10.1016/j.molcel.2017.01.031 28257701
11. Zhang J.M., Liu X.M., Ding Y.H., Xiong L.Y., Ren J.Y., Zhou Z.X., Wang H.T., Zhang M.J., Yu Y., Dong M.Q. et al. (2014) Fission yeast Pxd1 promotes proper DNA repair by activating Rad16XPF and inhibiting Dna2. PLoS biology, 12, e1001946. doi: 10.1371/journal.pbio.1001946 25203555
12. Schmidt H., Kapitza-Fecke P., Stephen E.R. and Gutz H. (1989) Some of the swi genes of Schizosaccharomyces pombe also have a function in the repair of radiation damage. Current genetics, 16, 89–94. doi: 10.1007/BF00393400 2598273
13. Heideker J., Prudden J., Perry J.J., Tainer J.A. and Boddy M.N. (2011) SUMO-targeted ubiquitin ligase, Rad60, and Nse2 SUMO ligase suppress spontaneous Top1-mediated DNA damage and genome instability. PLoS genetics, 7, e1001320. doi: 10.1371/journal.pgen.1001320 21408210
14. Wang H., Zhang Z., Zhang L., Zhang Q., Zhang L., Zhao Y., Wang W., Fan Y. and Wang L. (2015) A novel protein, Rsf1/Pxd1, is critical for the single-strand annealing pathway of double-strand break repair in Schizosaccharomyces pombe. Molecular microbiology, 96, 1211–1225. doi: 10.1111/mmi.13001 25777942
15. Bae S.H., Bae K.H., Kim J.A. and Seo Y.S. (2001) RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature, 412, 456–461. doi: 10.1038/35086609 11473323
16. Cejka P., Cannavo E., Polaczek P., Masuda-Sasa T., Pokharel S., Campbell J.L. and Kowalczykowski S.C. (2010) DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature, 467, 112–116. doi: 10.1038/nature09355 20811461
17. Hu J., Sun L., Shen F., Chen Y., Hua Y., Liu Y., Zhang M., Hu Y., Wang Q., Xu W. et al. (2012) The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing. Cell, 149, 1221–1232. doi: 10.1016/j.cell.2012.04.030 22682245
18. Niu H., Chung W.H., Zhu Z., Kwon Y., Zhao W., Chi P., Prakash R., Seong C., Liu D., Lu L. et al. (2010) Mechanism of the ATP-dependent DNA end-resection machinery from Saccharomyces cerevisiae. Nature, 467, 108–111. doi: 10.1038/nature09318 20811460
19. Thangavel S., Berti M., Levikova M., Pinto C., Gomathinayagam S., Vujanovic M., Zellweger R., Moore H., Lee E.H., Hendrickson E.A. et al. (2015) DNA2 drives processing and restart of reversed replication forks in human cells. The Journal of cell biology, 208, 545–562. doi: 10.1083/jcb.201406100 25733713
20. Yu Y., Pham N., Xia B., Papusha A., Wang G., Yan Z., Peng G., Chen K. and Ira G. (2018) Dna2 nuclease deficiency results in large and complex DNA insertions at chromosomal breaks. Nature, 564, 287–290. doi: 10.1038/s41586-018-0769-8 30518856
21. Zhu Z., Chung W.H., Shim E.Y., Lee S.E. and Ira G. (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell, 134, 981–994. doi: 10.1016/j.cell.2008.08.037 18805091
22. Karanja K.K., Cox S.W., Duxin J.P., Stewart S.A. and Campbell J.L. (2012) DNA2 and EXO1 in replication-coupled, homology-directed repair and in the interplay between HDR and the FA/BRCA network. Cell cycle, 11, 3983–3996. doi: 10.4161/cc.22215 22987153
23. Elliott B., Richardson C. and Jasin M. (2005) Chromosomal translocation mechanisms at intronic alu elements in mammalian cells. Molecular cell, 17, 885–894. doi: 10.1016/j.molcel.2005.02.028 15780943
24. Manthey G.M. and Bailis A.M. (2010) Rad51 inhibits translocation formation by non-conservative homologous recombination in Saccharomyces cerevisiae. PloS one, 5, e11889. doi: 10.1371/journal.pone.0011889 20686691
25. Bhargava R., Onyango D.O. and Stark J.M. (2016) Regulation of Single-Strand Annealing and its Role in Genome Maintenance. Trends in genetics: TIG, 32, 566–575. doi: 10.1016/j.tig.2016.06.007 27450436
26. Higa L.A., Mihaylov I.S., Banks D.P., Zheng J. and Zhang H. (2003) Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint. Nature cell biology, 5, 1008–1015. doi: 10.1038/ncb1061 14578910
27. Hu J., McCall C.M., Ohta T. and Xiong Y. (2004) Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage. Nature cell biology, 6, 1003–1009. doi: 10.1038/ncb1172 15448697
28. Arias E.E. and Walter J.C. (2006) PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nature cell biology, 8, 84–90. doi: 10.1038/ncb1346 16362051
29. Higa L.A., Banks D., Wu M., Kobayashi R., Sun H. and Zhang H. (2006) L2DTL/CDT2 interacts with the CUL4/DDB1 complex and PCNA and regulates CDT1 proteolysis in response to DNA damage. Cell cycle, 5, 1675–1680. doi: 10.4161/cc.5.15.3149 16861906
30. Hu J. and Xiong Y. (2006) An evolutionarily conserved function of proliferating cell nuclear antigen for Cdt1 degradation by the Cul4-Ddb1 ubiquitin ligase in response to DNA damage. The Journal of biological chemistry, 281, 3753–3756. doi: 10.1074/jbc.C500464200 16407242
31. Jin J., Arias E.E., Chen J., Harper J.W. and Walter J.C. (2006) A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Molecular cell, 23, 709–721. doi: 10.1016/j.molcel.2006.08.010 16949367
32. Ralph E., Boye E. and Kearsey S.E. (2006) DNA damage induces Cdt1 proteolysis in fission yeast through a pathway dependent on Cdt2 and Ddb1. EMBO reports, 7, 1134–1139. doi: 10.1038/sj.embor.7400827 17039252
33. Sansam C.L., Shepard J.L., Lai K., Ianari A., Danielian P.S., Amsterdam A., Hopkins N. and Lees J.A. (2006) DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint. Genes & development, 20, 3117–3129.
34. Senga T., Sivaprasad U., Zhu W., Park J.H., Arias E.E., Walter J.C. and Dutta A. (2006) PCNA is a cofactor for Cdt1 degradation by CUL4/DDB1-mediated N-terminal ubiquitination. The Journal of biological chemistry, 281, 6246–6252. doi: 10.1074/jbc.M512705200 16407252
35. Holmberg C., Fleck O., Hansen H.A., Liu C., Slaaby R., Carr A.M. and Nielsen O. (2005) Ddb1 controls genome stability and meiosis in fission yeast. Genes Dev, 19, 853–862. doi: 10.1101/gad.329905 15805471
36. Liu C., Poitelea M., Watson A., Yoshida S.H., Shimoda C., Holmberg C., Nielsen O. and Carr A.M. (2005) Transactivation of Schizosaccharomyces pombe cdt2+ stimulates a Pcu4-Ddb1-CSN ubiquitin ligase. The EMBO journal, 24, 3940–3951. doi: 10.1038/sj.emboj.7600854 16252005
37. Liu C., Powell K.A., Mundt K., Wu L., Carr A.M. and Caspari T. (2003) Cop9/signalosome subunits and Pcu4 regulate ribonucleotide reductase by both checkpoint-dependent and -independent mechanisms. Genes & development, 17, 1130–1140.
38. Moss J., Tinline-Purvis H., Walker C.A., Folkes L.K., Stratford M.R., Hayles J., Hoe K.L., Kim D.U., Park H.O., Kearsey S.E. et al. (2010) Break-induced ATR and Ddb1-Cul4(Cdt)(2) ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast. Genes & development, 24, 2705–2716.
39. Havens C.G. and Walter J.C. (2009) Docking of a specialized PIP Box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Molecular cell, 35, 93–104. doi: 10.1016/j.molcel.2009.05.012 19595719
40. Havens C.G., Shobnam N., Guarino E., Centore R.C., Zou L., Kearsey S.E. and Walter J.C. (2012) Direct role for proliferating cell nuclear antigen in substrate recognition by the E3 ubiquitin ligase CRL4Cdt2. The Journal of biological chemistry, 287, 11410–11421. doi: 10.1074/jbc.M111.337683 22303007
41. Guarino E., Shepherd M.E., Salguero I., Hua H., Deegan R.S. and Kearsey S.E. (2011) Cdt1 proteolysis is promoted by dual PIP degrons and is modulated by PCNA ubiquitylation. Nucleic acids research, 39, 5978–5990. doi: 10.1093/nar/gkr222 21493688
42. Salguero I., Guarino E., Shepherd M.E., Deegan T.D., Havens C.G., MacNeill S.A., Walter J.C. and Kearsey S.E. (2012) Ribonucleotide reductase activity is coupled to DNA synthesis via proliferating cell nuclear antigen. Current biology: CB, 22, 720–726. doi: 10.1016/j.cub.2012.02.070 22464192
43. Abbas T., Shibata E., Park J., Jha S., Karnani N. and Dutta A. (2010) CRL4(Cdt2) regulates cell proliferation and histone gene expression by targeting PR-Set7/Set8 for degradation. Molecular cell, 40, 9–21. doi: 10.1016/j.molcel.2010.09.014 20932471
44. Abbas T., Sivaprasad U., Terai K., Amador V., Pagano M. and Dutta A. (2008) PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4Cdt2 ubiquitin ligase complex. Genes & development, 22, 2496–2506.
45. Centore R.C., Havens C.G., Manning A.L., Li J.M., Flynn R.L., Tse A., Jin J., Dyson N.J., Walter J.C. and Zou L. (2010) CRL4(Cdt2)-mediated destruction of the histone methyltransferase Set8 prevents premature chromatin compaction in S phase. Molecular cell, 40, 22–33. doi: 10.1016/j.molcel.2010.09.015 20932472
46. Jorgensen S., Eskildsen M., Fugger K., Hansen L., Larsen M.S., Kousholt A.N., Syljuasen R.G., Trelle M.B., Jensen O.N., Helin K. et al. (2011) SET8 is degraded via PCNA-coupled CRL4(CDT2) ubiquitylation in S phase and after UV irradiation. The Journal of cell biology, 192, 43–54. doi: 10.1083/jcb.201009076 21220508
47. Kim S.H. and Michael W.M. (2008) Regulated proteolysis of DNA polymerase eta during the DNA-damage response in C. elegans. Molecular cell, 32, 757–766. doi: 10.1016/j.molcel.2008.11.016 19111656
48. Kim Y., Starostina N.G. and Kipreos E.T. (2008) The CRL4Cdt2 ubiquitin ligase targets the degradation of p21Cip1 to control replication licensing. Genes & development, 22, 2507–2519.
49. Nishitani H., Shiomi Y., Iida H., Michishita M., Takami T. and Tsurimoto T. (2008) CDK inhibitor p21 is degraded by a proliferating cell nuclear antigen-coupled Cul4-DDB1Cdt2 pathway during S phase and after UV irradiation. The Journal of biological chemistry, 283, 29045–29052. doi: 10.1074/jbc.M806045200 18703516
50. Shibutani S.T., de la Cruz A.F., Tran V., Turbyfill W.J. 3rd, Reis T., Edgar B.A. and Duronio R.J. (2008) Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Developmental cell, 15, 890–900. doi: 10.1016/j.devcel.2008.10.003 19081076
51. Stuart S.A. and Wang J.Y. (2009) Ionizing radiation induces ATM-independent degradation of p21Cip1 in transformed cells. The Journal of biological chemistry, 284, 15061–15070. doi: 10.1074/jbc.M808810200 19332548
52. Tardat M., Brustel J., Kirsh O., Lefevbre C., Callanan M., Sardet C. and Julien E. (2010) The histone H4 Lys 20 methyltransferase PR-Set7 regulates replication origins in mammalian cells. Nature cell biology, 12, 1086–1093. doi: 10.1038/ncb2113 20953199
53. Terai K., Shibata E., Abbas T. and Dutta A. (2013) Degradation of p12 subunit by CRL4Cdt2 E3 ligase inhibits fork progression after DNA damage. J Biol Chem, 288, 30509–30514. doi: 10.1074/jbc.C113.505586 24022480
54. Zhang S., Zhao H., Darzynkiewicz Z., Zhou P., Zhang Z., Lee E.Y. and Lee M.Y. (2013) A novel function of CRL4(Cdt2): regulation of the subunit structure of DNA polymerase delta in response to DNA damage and during the S phase. J Biol Chem, 288, 29550–29561. doi: 10.1074/jbc.M113.490466 23913683
55. Shibata E., Dar A. and Dutta A. (2014) CRL4Cdt2 E3 ubiquitin ligase and proliferating cell nuclear antigen (PCNA) cooperate to degrade thymine DNA glycosylase in S phase. J Biol Chem, 289, 23056–23064. doi: 10.1074/jbc.M114.574210 24962565
56. Slenn T.J., Morris B., Havens C.G., Freeman R.M. Jr., Takahashi T.S. and Walter J.C. (2014) Thymine DNA glycosylase is a CRL4Cdt2 substrate. J Biol Chem, 289, 23043–23055. doi: 10.1074/jbc.M114.574194 24947512
57. Braun S., Garcia J.F., Rowley M., Rougemaille M., Shankar S. and Madhani H.D. (2011) The Cul4-Ddb1(Cdt)(2) ubiquitin ligase inhibits invasion of a boundary-associated antisilencing factor into heterochromatin. Cell, 144, 41–54. doi: 10.1016/j.cell.2010.11.051 21215368
58. Kim D.H., Budhavarapu V.N., Herrera C.R., Nam H.W., Kim Y.S. and Yew P.R. (2010) The CRL4Cdt2 ubiquitin ligase mediates the proteolysis of cyclin-dependent kinase inhibitor Xic1 through a direct association with PCNA. Molecular and cellular biology, 30, 4120–4133. doi: 10.1128/MCB.01135-09 20606006
59. Bacquin A., Pouvelle C., Siaud N., Perderiset M., Salome-Desnoulez S., Tellier-Lebegue C., Lopez B., Charbonnier J.B. and Kannouche P.L. (2013) The helicase FBH1 is tightly regulated by PCNA via CRL4(Cdt2)-mediated proteolysis in human cells. Nucleic acids research, 41, 6501–6513. doi: 10.1093/nar/gkt397 23677613
60. Clijsters L. and Wolthuis R. (2014) PIP-box-mediated degradation prohibits re-accumulation of Cdc6 during S phase. Journal of cell science, 127, 1336–1345. doi: 10.1242/jcs.145862 24434580
61. Han C., Wani G., Zhao R., Qian J., Sharma N., He J., Zhu Q., Wang Q.E. and Wani A.A. (2015) Cdt2-mediated XPG degradation promotes gap-filling DNA synthesis in nucleotide excision repair. Cell cycle, 14, 1103–1115. doi: 10.4161/15384101.2014.973740 25483071
62. Hoffman C.S., Wood V. and Fantes P.A. (2015) An Ancient Yeast for Young Geneticists: A Primer on the Schizosaccharomyces pombe Model System. Genetics, 201, 403–423. doi: 10.1534/genetics.115.181503 26447128
63. Gomez E.B. and Forsburg S.L. (2004) Analysis of the fission yeast Schizosaccharomyces pombe cell cycle. Methods in molecular biology, 241, 93–111. doi: 10.1385/1-59259-646-0:93 14970648
64. Bondar T., Ponomarev A. and Raychaudhuri P. (2004) Ddb1 is required for the proteolysis of the Schizosaccharomyces pombe replication inhibitor Spd1 during S phase and after DNA damage. The Journal of biological chemistry, 279, 9937–9943. doi: 10.1074/jbc.M312570200 14701809
65. Vejrup-Hansen R., Fleck O., Landvad K., Fahnoe U., Broendum S.S., Schreurs A.S., Kragelund B.B., Carr A.M., Holmberg C. and Nielsen O. (2014) Spd2 assists Spd1 in the modulation of ribonucleotide reductase architecture but does not regulate deoxynucleotide pools. Journal of cell science, 127, 2460–2470. doi: 10.1242/jcs.139816 24652833
66. Kang H.Y., Choi E., Bae S.H., Lee K.H., Gim B.S., Kim H.D., Park C., MacNeill S.A. and Seo Y.S. (2000) Genetic analyses of Schizosaccharomyces pombe dna2(+) reveal that dna2 plays an essential role in Okazaki fragment metabolism. Genetics, 155, 1055–1067. 10880469
67. Ray Chaudhuri A., Hashimoto Y., Herrador R., Neelsen K.J., Fachinetti D., Bermejo R., Cocito A., Costanzo V. and Lopes M. (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nature structural & molecular biology, 19, 417–423.
68. Liu W., Zhou M., Li Z., Li H., Polaczek P., Dai H., Wu Q., Liu C., Karanja K.K., Popuri V. et al. (2016) A Selective Small Molecule DNA2 Inhibitor for Sensitization of Human Cancer Cells to Chemotherapy. EBioMedicine, 6, 73–86. doi: 10.1016/j.ebiom.2016.02.043 27211550
69. Ryu G.H., Tanaka H., Kim D.H., Kim J.H., Bae S.H., Kwon Y.N., Rhee J.S., MacNeill S.A. and Seo Y.S. (2004) Genetic and biochemical analyses of Pfh1 DNA helicase function in fission yeast. Nucleic Acids Res, 32, 4205–4216. doi: 10.1093/nar/gkh720 15302919
70. Watson A.T., Daigaku Y., Mohebi S., Etheridge T.J., Chahwan C., Murray J.M. and Carr A.M. (2013) Optimisation of the Schizosaccharomyces pombe urg1 expression system. PloS one, 8, e83800. doi: 10.1371/journal.pone.0083800 24376751
71. Watson A.T., Werler P. and Carr A.M. (2011) Regulation of gene expression at the fission yeast Schizosaccharomyces pombe urg1 locus. Gene, 484, 75–85. doi: 10.1016/j.gene.2011.05.028 21664261
72. Matos J., Blanco M.G., Maslen S., Skehel J.M. and West S.C. (2011) Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell, 147, 158–172. doi: 10.1016/j.cell.2011.08.032 21962513
73. Gallo-Fernandez M., Saugar I., Ortiz-Bazan M.A., Vazquez M.V. and Tercero J.A. (2012) Cell cycle-dependent regulation of the nuclease activity of Mus81-Eme1/Mms4. Nucleic acids research, 40, 8325–8335. doi: 10.1093/nar/gks599 22730299
74. Dehe P.M., Coulon S., Scaglione S., Shanahan P., Takedachi A., Wohlschlegel J.A., Yates J.R. 3rd, Llorente B., Russell P. and Gaillard P.H. (2013) Regulation of Mus81-Eme1 Holliday junction resolvase in response to DNA damage. Nature structural & molecular biology, 20, 598–603.
75. Princz L.N., Wild P., Bittmann J., Aguado F.J., Blanco M.G., Matos J. and Pfander B. (2017) Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis. The EMBO journal, 36, 664–678. doi: 10.15252/embj.201694831 28096179
76. Palma A., Pugliese G.M., Murfuni I., Marabitti V., Malacaria E., Rinalducci S., Minoprio A., Sanchez M., Mazzei F., Zolla L. et al. (2018) Phosphorylation by CK2 regulates MUS81/EME1 in mitosis and after replication stress. Nucleic acids research, 46, 5109–5124. doi: 10.1093/nar/gky280 29850896
77. Chen X., Niu H., Chung W.H., Zhu Z., Papusha A., Shim E.Y., Lee S.E., Sung P. and Ira G. (2011) Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nature structural & molecular biology, 18, 1015–1019.
78. Kai M., Boddy M.N., Russell P. and Wang T.S. (2005) Replication checkpoint kinase Cds1 regulates Mus81 to preserve genome integrity during replication stress. Genes & development, 19, 919–932.
79. Toh G.W., Sugawara N., Dong J., Toth R., Lee S.E., Haber J.E. and Rouse J. (2010) Mec1/Tel1-dependent phosphorylation of Slx4 stimulates Rad1-Rad10-dependent cleavage of non-homologous DNA tails. DNA repair, 9, 718–726. doi: 10.1016/j.dnarep.2010.02.013 20382573
80. Zheng L., Meng Y., Campbell J.L. and Shen B. (2020) Multiple roles of DNA2 nuclease/helicase in DNA metabolism, genome stability and human diseases. Nucleic acids research, 48, 16–35. doi: 10.1093/nar/gkz1101 31754720
81. Ochs F., Somyajit K., Altmeyer M., Rask M.B., Lukas J. and Lukas C. (2016) 53BP1 fosters fidelity of homology-directed DNA repair. Nature structural & molecular biology, 23, 714–721.
82. Leland B.A., Chen A.C., Zhao A.Y., Wharton R.C. and King M.C. (2018) Rev7 and 53BP1/Crb2 prevent RecQ helicase-dependent hyper-resection of DNA double-strand breaks. eLife, 7, e33402.
83. Yan Z., Xue C., Kumar S., Crickard J.B., Yu Y., Wang W., Pham N., Li Y., Niu H., Sung P. et al. (2019) Rad52 Restrains Resection at DNA Double-Strand Break Ends in Yeast. Molecular cell, 76, 699–711 e696. doi: 10.1016/j.molcel.2019.08.017 31542296
84. Forsburg S.L. and Rhind N. (2006) Basic methods for fission yeast. Yeast, 23, 173–183. doi: 10.1002/yea.1347 16498704
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 7
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- Holocentric chromosomes
- The evolution and functional divergence of the histone H2B family in plants
- Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii
- RCC1L (WBSCR16) isoforms coordinate mitochondrial ribosome assembly through their interaction with GTPases