#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Sycp2 is essential for synaptonemal complex assembly, early meiotic recombination and homologous pairing in zebrafish spermatocytes


Autoři: Kazumasa Takemoto aff001;  Yukiko Imai aff002;  Kenji Saito aff002;  Toshihiro Kawasaki aff001;  Peter M. Carlton aff003;  Kei-ichiro Ishiguro aff004;  Noriyoshi Sakai aff001
Působiště autorů: Department of Genetics, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan aff001;  Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan aff002;  Radiation Biology Center and Graduate School of Biostudies, Kyoto University, Kyoto, Japan aff003;  Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan aff004
Vyšlo v časopise: Sycp2 is essential for synaptonemal complex assembly, early meiotic recombination and homologous pairing in zebrafish spermatocytes. PLoS Genet 16(2): e32767. doi:10.1371/journal.pgen.1008640
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pgen.1008640

Souhrn

Meiotic recombination is essential for faithful segregation of homologous chromosomes during gametogenesis. The progression of recombination is associated with dynamic changes in meiotic chromatin structures. However, whether Sycp2, a key structural component of meiotic chromatin, is required for the initiation of meiotic recombination is still unclear in vertebrates. Here, we describe that Sycp2 is required for assembly of the synaptonemal complex and early meiotic events in zebrafish spermatocytes. Our genetic screening by N-ethyl-N-nitrosourea mutagenesis revealed that ietsugu (its), a mutant zebrafish line with an aberrant splice site in the sycp2 gene, showed a defect during meiotic prophase I. The its mutation appeared to be a hypomorphic mutation compared to sycp2 knockout mutations generated by TALEN mutagenesis. Taking advantage of these sycp2 hypomorphic and knockout mutant lines, we demonstrated that Sycp2 is required for the assembly of the synaptonemal complex that is initiated in the vicinity of telomeres in wild-type zebrafish spermatocytes. Accordingly, homologous pairing, the foci of the meiotic recombinases Dmc1/Rad51 and RPA, and γH2AX signals were largely diminished in sycp2 knockout spermatocytes. Taken together, our data indicate that Sycp2 plays a critical role in not only the assembly of the synaptonemal complex, but also early meiotic recombination and homologous pairing, in vertebrates.

Klíčová slova:

Homologous recombination – Immunostaining – Nuclear staining – Spermatocytes – Telomeres – Testes – Zebrafish – Chromosome staining


Zdroje

1. Fraune J, Schramm S, Alsheimer M, Benavente R. The mammalian synaptonemal complex: Protein components, assembly and role in meiotic recombination. Exp Cell Res. 2012 Jul 15;318(12):1340–6. doi: 10.1016/j.yexcr.2012.02.018 22394509

2. Mao-Draayer Y, Galbraith AM, Pittman DL, Cool M, Malone RE. Analysis of Meiotic Recombination Pathways in the Yeast Saccharomyces cerevisiae. Genetics. 1996 Sep 1;144(1):71–86. 8878674

3. Xu L, Weiner BM, Kleckner N. Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev. 1997 Jan 1;11(1):106–18. doi: 10.1101/gad.11.1.106 9000054

4. Schwacha A, Kleckner N. Interhomolog Bias during Meiotic Recombination: Meiotic Functions Promote a Highly Differentiated Interhomolog-Only Pathway. Cell. 1997 Sep 19;90(6):1123–35. doi: 10.1016/s0092-8674(00)80378-5 9323140

5. Woltering D, Baumgartner B, Bagchi S, Larkin B, Loidl J, Santos T de los, et al. Meiotic Segregation, Synapsis, and Recombination Checkpoint Functions Require Physical Interaction between the Chromosomal Proteins Red1p and Hop1p. Mol Cell Biol. 2000 Sep 15;20(18):6646–58. doi: 10.1128/mcb.20.18.6646-6658.2000 10958662

6. Blat Y, Protacio RU, Hunter N, Kleckner N. Physical and Functional Interactions among Basic Chromosome Organizational Features Govern Early Steps of Meiotic Chiasma Formation. Cell. 2002 Dec 13;111(6):791–802. doi: 10.1016/s0092-8674(02)01167-4 12526806

7. Goodyer W, Kaitna S, Couteau F, Ward JD, Boulton SJ, Zetka M. HTP-3 Links DSB Formation with Homolog Pairing and Crossing Over during C. elegans Meiosis. Dev Cell. 2008 Feb 12;14(2):263–74. doi: 10.1016/j.devcel.2007.11.016 18267094

8. Panizza S, Mendoza MA, Berlinger M, Huang L, Nicolas A, Shirahige K, et al. Spo11-Accessory Proteins Link Double-Strand Break Sites to the Chromosome Axis in Early Meiotic Recombination. Cell. 2011 Aug 5;146(3):372–83. doi: 10.1016/j.cell.2011.07.003 21816273

9. Kumar R, Bourbon H-M, de Massy B. Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice. Genes Dev. 2010 Jun 15;24(12):1266–80. doi: 10.1101/gad.571710 20551173

10. Stanzione M, Baumann M, Papanikos F, Dereli I, Lange J, Ramlal A, et al. Meiotic DNA break formation requires the unsynapsed chromosome axis-binding protein IHO1 (CCDC36) in mice. Nat Cell Biol. 2016 Nov;18(11):1208–20. doi: 10.1038/ncb3417 27723721

11. Kumar R, Oliver C, Brun C, Juarez-Martinez AB, Tarabay Y, Kadlec J, et al. Mouse REC114 is essential for meiotic DNA double-strand break formation and forms a complex with MEI4. Life Sci Alliance. 2018 Dec 1;1(6):e201800259. doi: 10.26508/lsa.201800259 30569039

12. Yoshida K, Kondoh G, Matsuda Y, Habu T, Nishimune Y, Morita T. The Mouse RecA-like Gene Dmc1 Is Required for Homologous Chromosome Synapsis during Meiosis. Mol Cell. 1998 Apr 1;1(5):707–18. doi: 10.1016/s1097-2765(00)80070-2 9660954

13. Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, et al. Meiotic Prophase Arrest with Failure of Chromosome Synapsis in Mice Deficient for Dmc1, a Germline-Specific RecA Homolog. Mol Cell. 1998 Apr 1;1(5):697–705. doi: 10.1016/s1097-2765(00)80069-6 9660953

14. Dai J, Voloshin O, Potapova S, Camerini-Otero RD. Meiotic Knockdown and Complementation Reveals Essential Role of RAD51 in Mouse Spermatogenesis. Cell Rep. 2017 Feb 7;18(6):1383–94. doi: 10.1016/j.celrep.2017.01.024 28178517

15. Mahadevaiah SK, Turner JMA, Baudat F, Rogakou EP, de Boer P, Blanco-Rodríguez J, et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet. 2001 Mar;27(3):271–6. doi: 10.1038/85830 11242108

16. Romanienko PJ, Camerini-Otero RD. The Mouse Spo11 Gene Is Required for Meiotic Chromosome Synapsis. Mol Cell. 2000 Nov;6(5):975–87. doi: 10.1016/s1097-2765(00)00097-6 11106738

17. Fraune J, Alsheimer M, Volff J-N, Busch K, Fraune S, Bosch TCG, et al. Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans. Proc Natl Acad Sci. 2012 Oct 9;109(41):16588–93. doi: 10.1073/pnas.1206875109 23012415

18. Fraune J, Alsheimer M, Redolfi J, Brochier-Armanet C, Benavente R. Protein SYCP2 Is an Ancient Component of the Metazoan Synaptonemal Complex. Cytogenet Genome Res. 2014;144(4):299–305. doi: 10.1159/000381080 25831978

19. West AM, Rosenberg SC, Ur SN, Lehmer MK, Ye Q, Hagemann G, et al. A conserved filamentous assembly underlies the structure of the meiotic chromosome axis. Tyler JK, de Massy B, editors. eLife. 2019 Jan 18;8:e40372. doi: 10.7554/eLife.40372 30657449

20. Yuan L, Liu J-G, Zhao J, Brundell E, Daneholt B, Höög C. The Murine SCP3 Gene Is Required for Synaptonemal Complex Assembly, Chromosome Synapsis, and Male Fertility. Mol Cell. 2000 Jan 1;5(1):73–83. doi: 10.1016/s1097-2765(00)80404-9 10678170

21. Offenberg HH, Schalk JA, Meuwissen RL, van Aalderen M, Kester HA, Dietrich AJ, et al. SCP2: a major protein component of the axial elements of synaptonemal complexes of the rat. Nucleic Acids Res. 1998 Jun 1;26(11):2572–9. doi: 10.1093/nar/26.11.2572 9592139

22. Yang F, Fuente RDL, Leu NA, Baumann C, McLaughlin KJ, Wang PJ. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J Cell Biol. 2006 May 22;173(4):497–507. doi: 10.1083/jcb.200603063 16717126

23. Winkel K, Alsheimer M, Öllinger R, Benavente R. Protein SYCP2 provides a link between transverse filaments and lateral elements of mammalian synaptonemal complexes. Chromosoma. 2009 Apr 1;118(2):259–67. doi: 10.1007/s00412-008-0194-0 19034475

24. Kochakpour N, Moens PB. Sex-specific crossover patterns in Zebrafish (Danio rerio). Heredity. 2008 Mar 5;100(5):489–95. doi: 10.1038/sj.hdy.6801091 18322458

25. Saito K, Siegfried KR, Nüsslein-Volhard C, Sakai N. Isolation and cytogenetic characterization of zebrafish meiotic prophase I mutants. Dev Dyn. 2011 Jul 1;240(7):1779–92. doi: 10.1002/dvdy.22661 21594953

26. Blokhina YP, Nguyen AD, Draper BW, Burgess SM. The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio. PLOS Genet. 2019 Jan 17;15(1):e1007730. doi: 10.1371/journal.pgen.1007730 30653507

27. Saito K, Sakai C, Kawasaki T, Sakai N. Telomere distribution pattern and synapsis initiation during spermatogenesis in zebrafish. Dev Dyn. 2014 Nov 1;243(11):1448–56. doi: 10.1002/dvdy.24166 25044979

28. Baker KE, Parker R. Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr Opin Cell Biol. 2004 Jun 1;16(3):293–9. doi: 10.1016/j.ceb.2004.03.003 15145354

29. Uchida D, Yamashita M, Kitano T, Iguchi T. Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J Exp Biol. 2002 Mar 15;205(6):711–8.

30. Maack G, Segner H. Morphological development of the gonads in zebrafish. J Fish Biol. 2003;62(4):895–906.

31. Rodríguez-Marí A, Yan Y-L, BreMiller RA, Wilson C, Cañestro C, Postlethwait JH. Characterization and expression pattern of zebrafish anti-Müllerian hormone (amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Expr Patterns. 2005 Jun 1;5(5):655–67. doi: 10.1016/j.modgep.2005.02.008 15939378

32. Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, et al. A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish. Cell. 2007 Apr 6;129(1):69–82. doi: 10.1016/j.cell.2007.03.026 17418787

33. Siegfried KR, Nüsslein-Volhard C. Germ line control of female sex determination in zebrafish. Dev Biol. 2008 Dec 15;324(2):277–87. doi: 10.1016/j.ydbio.2008.09.025 18930041

34. Slanchev K, Stebler J, de la Cueva-Méndez G, Raz E. Development without germ cells: The role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4074–9. doi: 10.1073/pnas.0407475102 15728735

35. Draper BW, McCallum CM, Moens CB. nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol. 2007 May 15;305(2):589–98. doi: 10.1016/j.ydbio.2007.03.007 17418113

36. Rodríguez-Marí A, Cañestro C, BreMiller RA, Nguyen-Johnson A, Asakawa K, Kawakami K, et al. Sex Reversal in Zebrafish fancl Mutants Is Caused by Tp53-Mediated Germ Cell Apoptosis. PLOS Genet. 2010 Jul 22;6(7):e1001034. doi: 10.1371/journal.pgen.1001034 20661450

37. Sasaki A, Ide S, Kawamoto Y, Bando T, Murata Y, Shimura M, et al. Telomere Visualization in Tissue Sections using Pyrrole–Imidazole Polyamide Probes. Sci Rep. 2016 Jul 6;6:29261. doi: 10.1038/srep29261 27380936

38. Habu T, Taki T, West A, Nishimune Y, Morita T. The mouse and human homologs of DMC1, the yeast meiosis-specific homologous recombination gene, have a common unique form of exon-skipped transcript in meiosis. Nucleic Acids Res. 1996 Feb 1;24(3):470–7. doi: 10.1093/nar/24.3.470 8602360

39. Shi B, Xue J, Yin H, Guo R, Luo M, Ye L, et al. Dual functions for the ssDNA-binding protein RPA in meiotic recombination. PLOS Genet. 2019 Feb 4;15(2):e1007952. doi: 10.1371/journal.pgen.1007952 30716097

40. Kamminga LM, Luteijn MJ, Broeder MJ den, Redl S, Kaaij LJT, Roovers EF, et al. Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J. 2010 Nov 3;29(21):3688–700. doi: 10.1038/emboj.2010.233 20859253

41. Shive HR, West RR, Embree LJ, Azuma M, Sood R, Liu P, et al. brca2 in zebrafish ovarian development, spermatogenesis, and tumorigenesis. Proc Natl Acad Sci. 2010 Nov 9;107(45):19350–5. doi: 10.1073/pnas.1011630107 20974951

42. Morelli MA, Cohen PE. Not all germ cells are created equal: Aspects of sexual dimorphism in mammalian meiosis. Reproduction. 2005 Dec 1;130(6):761–81. doi: 10.1530/rep.1.00865 16322537

43. Agostinho A, Manneberg O, van Schendel R, Hernández-Hernández A, Kouznetsova A, Blom H, et al. High density of REC8 constrains sister chromatid axes and prevents illegitimate synaptonemal complex formation. EMBO Rep. 2016 Jun 1;17(6):901–13. doi: 10.15252/embr.201642030 27170622

44. Nag DK, Scherthan H, Rockmill B, Bhargava J, Roeder GS. Heteroduplex DNA formation and homolog pairing in yeast meiotic mutants. Genetics. 1995 Sep 1;141(1):75–86. 8536992

45. Smith AV, Roeder GS. The Yeast Red1 Protein Localizes to the Cores of Meiotic Chromosomes. J Cell Biol. 1997 Mar 10;136(5):957–67. doi: 10.1083/jcb.136.5.957 9060462

46. Shin Y-H, Choi Y, Erdin SU, Yatsenko SA, Kloc M, Yang F, et al. Hormad1 Mutation Disrupts Synaptonemal Complex Formation, Recombination, and Chromosome Segregation in Mammalian Meiosis. PLOS Genet. 2010 Nov 4;6(11):e1001190. doi: 10.1371/journal.pgen.1001190 21079677

47. Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, et al. Mouse HORMAD1 and HORMAD2, Two Conserved Meiotic Chromosomal Proteins, Are Depleted from Synapsed Chromosome Axes with the Help of TRIP13 AAA-ATPase. PLOS Genet. 2009 Oct 23;5(10):e1000702. doi: 10.1371/journal.pgen.1000702 19851446

48. Fukuda T, Daniel K, Wojtasz L, Toth A, Höög C. A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes. Exp Cell Res. 2010 Jan 15;316(2):158–71. doi: 10.1016/j.yexcr.2009.08.007 19686734

49. Sansam CL, Pezza RJ. Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination. Febs J. 2015 Jul;282(13):2444–57. doi: 10.1111/febs.13317 25953379

50. Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Camerini-Otero RD. Recombination initiation maps of individual human genomes. Science. 2014 Nov 14;346(6211):1256442. doi: 10.1126/science.1256442 25395542

51. Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, et al. PRDM9 Is a Major Determinant of Meiotic Recombination Hotspots in Humans and Mice. Science. 2010 Feb 12;327(5967):836–40. doi: 10.1126/science.1183439 20044539

52. Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, et al. Drive Against Hotspot Motifs in Primates Implicates the PRDM9 Gene in Meiotic Recombination. Science. 2010 Feb 12;327(5967):876–9. doi: 10.1126/science.1182363 20044541

53. Berg IL, Neumann R, Lam K-WG, Sarbajna S, Odenthal-Hesse L, May CA, et al. PRDM9 variation strongly influences recombination hot-spot activity and meiotic instability in humans. Nat Genet. 2010 Oct;42(10):859–63. doi: 10.1038/ng.658 20818382

54. Baudat F, Imai Y, de Massy B. Meiotic recombination in mammals: localization and regulation. Nat Rev Genet. 2013 Nov;14(11):794–806. doi: 10.1038/nrg3573 24136506

55. Grey C, Clément JAJ, Buard J, Leblanc B, Gut I, Gut M, et al. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites. Genome Res. 2017 Apr 1;27(4):580–90. doi: 10.1101/gr.217240.116 28336543

56. Baker Z, Schumer M, Haba Y, Bashkirova L, Holland C, Rosenthal GG, et al. Repeated losses of PRDM9-directed recombination despite the conservation of PRDM9 across vertebrates. eLife. 2017 Jun 6;6:e24133. doi: 10.7554/eLife.24133 28590247

57. Westerfield M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 3rd Edition [Internet]. Eugene, OR,: University of Oregon Press; 1995 [cited 2019 Jun 12]. Available from: https://zfin.org/ZDB-PUB-970327-24

58. Shinya M, Sakai N. Generation of Highly Homogeneous Strains of Zebrafish Through Full Sib-Pair Mating. G3 Genes Genomes Genet. 2011 Oct 1;1(5):377–86.

59. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011 Jul;39(12):e82. doi: 10.1093/nar/gkr218 21493687

60. Sakuma T, Hosoi S, Woltjen K, Suzuki K-I, Kashiwagi K, Wada H, et al. Efficient TALEN construction and evaluation methods for human cell and animal applications. Genes Cells Devoted Mol Cell Mech. 2013 Apr;18(4):315–26.

61. Chen Y, Zeng S, Hu R, Wang X, Huang W, Liu J, et al. Using local chromatin structure to improve CRISPR/Cas9 efficiency in zebrafish. PLOS ONE. 2017 Aug 11;12(8):e0182528. doi: 10.1371/journal.pone.0182528 28800611

62. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013 Mar;31(3):227–9. doi: 10.1038/nbt.2501 23360964

63. Urasaki A, Morvan G, Kawakami K. Functional Dissection of the Tol2 Transposable Element Identified the Minimal cis-Sequence and a Highly Repetitive Sequence in the Subterminal Region Essential for Transposition. Genetics. 2006 Oct;174(2):639–49. doi: 10.1534/genetics.106.060244 16959904

64. Peters AH, Plug AW, van Vugt MJ, de Boer P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res Int J Mol Supramol Evol Asp Chromosome Biol. 1997 Feb;5(1):66–8.

65. Allan C, Burel J-M, Moore J, Blackburn C, Linkert M, Loynton S, et al. OMERO: flexible, model-driven data management for experimental biology. Nat Methods. 2012 Mar;9(3):245–53. doi: 10.1038/nmeth.1896 22373911

66. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012 Jul;9(7):676–82. doi: 10.1038/nmeth.2019 22743772

67. Ishiguro K, Kim J, Fujiyama‐Nakamura S, Kato S, Watanabe Y. A new meiosis‐specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep. 2011 Mar 1;12(3):267–75. doi: 10.1038/embor.2011.2 21274006


Článek vyšel v časopise

PLOS Genetics


2020 Číslo 2
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#