Integrative comparison of the genomic and transcriptomic landscape between prostate cancer patients of predominantly African or European genetic ancestry
Autoři:
Jiao Yuan aff001; Kevin H. Kensler aff003; Zhongyi Hu aff001; Youyou Zhang aff001; Tianli Zhang aff001; Junjie Jiang aff001; Mu Xu aff001; Yutian Pan aff001; Meixiao Long aff005; Kathleen T. Montone aff006; Janos L. Tanyi aff002; Yi Fan aff007; Rugang Zhang aff008; Xiaowen Hu aff001; Timothy R. Rebbeck aff003; Lin Zhang aff001
Působiště autorů:
Center for Research on Reproduction & Women’s Health, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
aff001; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
aff002; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
aff003; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
aff004; Department of Internal Medicine, Division of Hematology, Ohio State University, Columbus, Ohio, United States of America
aff005; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
aff006; Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
aff007; Wistar Institute, Philadelphia, Pennsylvania, United States of America
aff008
Vyšlo v časopise:
Integrative comparison of the genomic and transcriptomic landscape between prostate cancer patients of predominantly African or European genetic ancestry. PLoS Genet 16(2): e32767. doi:10.1371/journal.pgen.1008641
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008641
Souhrn
Men of predominantly African Ancestry (AA) have higher prostate cancer (CaP) incidence and worse survival than men of predominantly European Ancestry (EA). While socioeconomic factors drive this disparity, genomic factors may also contribute to differences in the incidence and mortality rates. To compare the prevalence of prostate tumor genomic alterations and transcriptomic profiles by patient genetic ancestry, we evaluated genomic profiles from The Cancer Genome Atlas (TCGA) CaP cohort (n = 498). Patient global and local genetic ancestry were estimated by computational algorithms using genotyping data; 414 (83.1%) were EA, 61 (12.2%) were AA, 11 (2.2%) were East Asian Ancestry (EAA), 10 (2.0%) were Native American (NA), and 2 (0.4%) were other ancestry. Genetic ancestry was highly concordant with self-identified race/ethnicity. Subsequent analyses were limited to 61 AA and 414 EA cases. Significant differences were observed by ancestry in the frequency of SPOP mutations (20.3% AA vs. 10.0% EA; p = 5.6×10−03), TMPRSS2-ERG fusions (29.3% AA vs. 39.6% EA; p = 4.4×10−02), and PTEN deletions/losses (11.5% AA vs. 30.2% EA; p = 3.5×10−03). Differentially expressed genes (DEGs) between AAs and EAs showed significant enrichment for prostate eQTL target genes (p = 8.09×10−48). Enrichment of highly expressed DEGs for immune-related pathways was observed in AAs, and for PTEN/PI3K signaling in EAs. Nearly one-third of DEGs (31.3%) were long non-coding RNAs (DE-lncRNAs). The proportion of DE-lncRNAs with higher expression in AAs greatly exceeded that with lower expression in AAs (p = 1.2×10−125). Both ChIP-seq and RNA-seq data suggested a stronger regulatory role for AR signaling pathways in DE-lncRNAs vs. non-DE-lncRNAs. CaP-related oncogenic lncRNAs, such as PVT1, PCAT1 and PCAT10/CTBP1-AS, were found to be more highly expressed in AAs. We report substantial heterogeneity in the prostate tumor genome and transcriptome between EA and AA. These differences may be biological contributors to racial disparities in CaP incidence and outcomes.
Klíčová slova:
Cancer genomics – Comparative genomics – Gene expression – Human genetics – Long non-coding RNAs – Prostate cancer – Prostate gland – Transcriptome analysis
Zdroje
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34. doi: 10.3322/caac.21551 30620402
2. Zeng C, Wen W, Morgans AK, Pao W, Shu XO, Zheng W. Disparities by Race, Age, and Sex in the Improvement of Survival for Major Cancers: Results From the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) Program in the United States, 1990 to 2010. JAMA Oncol. 2015;1(1):88–96. doi: 10.1001/jamaoncol.2014.161 26182310
3. DeSantis CE, Miller KD, Goding Sauer A, Jemal A, Siegel RL. Cancer statistics for African Americans, 2019. CA Cancer J Clin. 2019. doi: 10.3322/caac.21555 30762872
4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2018. Epub 2018/09/13. doi: 10.3322/caac.21492 30207593
5. Rebbeck TR. Prostate Cancer Disparities by Race and Ethnicity: From Nucleotide to Neighborhood. Cold Spring Harb Perspect Med. 2018;8(9). doi: 10.1101/cshperspect.a030387 29229666
6. Haiman CA, Chen GK, Blot WJ, Strom SS, Berndt SI, Kittles RA, et al. Characterizing genetic risk at known prostate cancer susceptibility loci in African Americans. PLoS Genet. 2011;7(5):e1001387. Epub 2011/06/04. doi: 10.1371/journal.pgen.1001387 21637779
7. Kote-Jarai Z, Olama AA, Giles GG, Severi G, Schleutker J, Weischer M, et al. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat Genet. 2011;43(8):785–91. doi: 10.1038/ng.882 21743467
8. Eeles RA, Olama AA, Benlloch S, Saunders EJ, Leongamornlert DA, Tymrakiewicz M, et al. Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nat Genet. 2013;45(4):385–91, 91e1-2. doi: 10.1038/ng.2560 23535732
9. Al Olama AA, Kote-Jarai Z, Berndt SI, Conti DV, Schumacher F, Han Y, et al. A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nat Genet. 2014;46(10):1103–9. doi: 10.1038/ng.3094 25217961
10. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50(7):928–36. Epub 2018/06/13. doi: 10.1038/s41588-018-0142-8 29892016
11. Haiman CA, Chen GK, Blot WJ, Strom SS, Berndt SI, Kittles RA, et al. Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat Genet. 2011;43(6):570–3. Epub 2011/05/24. doi: 10.1038/ng.839 21602798
12. Cook MB, Wang Z, Yeboah ED, Tettey Y, Biritwum RB, Adjei AA, et al. A genome-wide association study of prostate cancer in West African men. Hum Genet. 2014;133(5):509–21. Epub 2013/11/05. doi: 10.1007/s00439-013-1387-z 24185611
13. Conti DV, Wang K, Sheng X, Bensen JT, Hazelett DJ, Cook MB, et al. Two Novel Susceptibility Loci for Prostate Cancer in Men of African Ancestry. J Natl Cancer Inst. 2017;109(8). Epub 2017/11/09. doi: 10.1093/jnci/djx084 29117387
14. Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015;163(4):1011–25. doi: 10.1016/j.cell.2015.10.025 26544944
15. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015;161(5):1215–28. doi: 10.1016/j.cell.2015.05.001 26000489
16. Spratt DE, Zumsteg ZS, Feng FY, Tomlins SA. Translational and clinical implications of the genetic landscape of prostate cancer. Nat Rev Clin Oncol. 2016;13(10):597–610. doi: 10.1038/nrclinonc.2016.76 27245282
17. Quigley DA, Dang HX, Zhao SG, Lloyd P, Aggarwal R, Alumkal JJ, et al. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell. 2018;174(3):758–69 e9. doi: 10.1016/j.cell.2018.06.039 30033370
18. Schumacher FR, Al Olama AA, Berndt SI, Benlloch S, Ahmed M, Saunders EJ, et al. Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nat Genet. 2018;50(7):928–36. doi: 10.1038/s41588-018-0142-8 29892016
19. Armenia J, Wankowicz SAM, Liu D, Gao J, Kundra R, Reznik E, et al. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018;50(5):645–51. doi: 10.1038/s41588-018-0078-z 29610475
20. Wallace TA, Prueitt RL, Yi M, Howe TM, Gillespie JW, Yfantis HG, et al. Tumor immunobiological differences in prostate cancer between African-American and European-American men. Cancer Res. 2008;68(3):927–36. doi: 10.1158/0008-5472.CAN-07-2608 18245496
21. Rose AE, Satagopan JM, Oddoux C, Zhou Q, Xu R, Olshen AB, et al. Copy number and gene expression differences between African American and Caucasian American prostate cancer. J Transl Med. 2010;8:70. Epub 2010/07/24. doi: 10.1186/1479-5876-8-70 20649978
22. Magi-Galluzzi C, Tsusuki T, Elson P, Simmerman K, LaFargue C, Esgueva R, et al. TMPRSS2-ERG gene fusion prevalence and class are significantly different in prostate cancer of Caucasian, African-American and Japanese patients. Prostate. 2011;71(5):489–97. Epub 2010/09/30. doi: 10.1002/pros.21265 20878952
23. Powell IJ, Dyson G, Land S, Ruterbusch J, Bock CH, Lenk S, et al. Genes associated with prostate cancer are differentially expressed in African American and European American men. Cancer Epidemiol Biomarkers Prev. 2013;22(5):891–7. Epub 2013/03/22. doi: 10.1158/1055-9965.EPI-12-1238 23515145
24. Khani F, Mosquera JM, Park K, Blattner M, O'Reilly C, MacDonald TY, et al. Evidence for molecular differences in prostate cancer between African American and Caucasian men. Clin Cancer Res. 2014;20(18):4925–34. doi: 10.1158/1078-0432.CCR-13-2265 25056375
25. Blattner M, Lee DJ, O'Reilly C, Park K, MacDonald TY, Khani F, et al. SPOP mutations in prostate cancer across demographically diverse patient cohorts. Neoplasia (New York, NY). 2014;16(1):14–20. doi: 10.1593/neo.131704 24563616
26. Levin AM, Lindquist KJ, Avila A, Witte JS, Paris PL, Rybicki BA. Performance of the Genomic Evaluators of Metastatic Prostate Cancer (GEMCaP) tumor biomarker for identifying recurrent disease in African American patients. Cancer Epidemiol Biomarkers Prev. 2014;23(8):1677–82. doi: 10.1158/1055-9965.EPI-13-1124 24891551
27. Yamoah K, Johnson MH, Choeurng V, Faisal FA, Yousefi K, Haddad Z, et al. Novel Biomarker Signature That May Predict Aggressive Disease in African American Men With Prostate Cancer. J Clin Oncol. 2015;33(25):2789–96. doi: 10.1200/JCO.2014.59.8912 26195723
28. Petrovics G, Li H, Stumpel T, Tan SH, Young D, Katta S, et al. A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men. EBioMedicine. 2015;2(12):1957–64. Epub 2016/02/05. doi: 10.1016/j.ebiom.2015.10.028 26844274
29. Lindquist KJ, Paris PL, Hoffmann TJ, Cardin NJ, Kazma R, Mefford JA, et al. Mutational Landscape of Aggressive Prostate Tumors in African American Men. Cancer Res. 2016;76(7):1860–8. doi: 10.1158/0008-5472.CAN-15-1787 26921337
30. Hardiman G, Savage SJ, Hazard ES, Wilson RC, Courtney SM, Smith MT, et al. Systems analysis of the prostate transcriptome in African-American men compared with European-American men. Pharmacogenomics. 2016;17(10):1129–43. Epub 2016/06/30. doi: 10.2217/pgs-2016-0025 27359067
31. Faisal FA, Sundi D, Tosoian JJ, Choeurng V, Alshalalfa M, Ross AE, et al. Racial Variations in Prostate Cancer Molecular Subtypes and Androgen Receptor Signaling Reflect Anatomic Tumor Location. Eur Urol. 2016;70(1):14–7. Epub 2015/10/08. doi: 10.1016/j.eururo.2015.09.031 26443432
32. Johnson MH, Ross AE, Alshalalfa M, Erho N, Yousefi K, Glavaris S, et al. SPINK1 Defines a Molecular Subtype of Prostate Cancer in Men with More Rapid Progression in an at Risk, Natural History Radical Prostatectomy Cohort. J Urol. 2016;196(5):1436–44. doi: 10.1016/j.juro.2016.05.092 27238617
33. Zhang L, Wang J, Wang Y, Zhang Y, Castro P, Shao L, et al. MNX1 Is Oncogenically Upregulated in African-American Prostate Cancer. Cancer Res. 2016;76(21):6290–8. doi: 10.1158/0008-5472.CAN-16-0087 27578002
34. Huang FW, Mosquera JM, Garofalo A, Oh C, Baco M, Amin-Mansour A, et al. Exome Sequencing of African-American Prostate Cancer Reveals Loss-of-Function ERF Mutations. Cancer Discov. 2017;7(9):973–83. doi: 10.1158/2159-8290.CD-16-0960 28515055
35. Wang BD, Ceniccola K, Hwang S, Andrawis R, Horvath A, Freedman JA, et al. Alternative splicing promotes tumour aggressiveness and drug resistance in African American prostate cancer. Nat Commun. 2017;8:15921. Epub 2017/07/01. doi: 10.1038/ncomms15921 28665395
36. Tosoian JJ, Almutairi F, Morais CL, Glavaris S, Hicks J, Sundi D, et al. Prevalence and Prognostic Significance of PTEN Loss in African-American and European-American Men Undergoing Radical Prostatectomy. Eur Urol. 2017;71(5):697–700. Epub 2016/08/02. doi: 10.1016/j.eururo.2016.07.026 27477529
37. Jaratlerdsiri W, Chan EKF, Gong T, Petersen DC, Kalsbeek AMF, Venter PA, et al. Whole Genome Sequencing Reveals Elevated Tumor Mutational Burden and Initiating Driver Mutations in African Men with Treatment-Naive, High-Risk Prostate Cancer. 2018:canres.0254.2018.
38. Tang W, Wallace TA, Yi M, Magi-Galluzzi C, Dorsey TH, Onabajo OO, et al. IFNL4-DeltaG Allele Is Associated with an Interferon Signature in Tumors and Survival of African-American Men with Prostate Cancer. Clin Cancer Res. 2018;24(21):5471–81. doi: 10.1158/1078-0432.CCR-18-1060 30012562
39. Kaur HB, Guedes LB, Lu J, Maldonado L, Reitz L, Barber JR, et al. Association of tumor-infiltrating T-cell density with molecular subtype, racial ancestry and clinical outcomes in prostate cancer. Mod Pathol. 2018;31(10):1539–52. doi: 10.1038/s41379-018-0083-x 29849114
40. Mahal BA, Alshalalfa M, Spratt DE, Davicioni E, Zhao SG, Feng FY, et al. Prostate Cancer Genomic-risk Differences Between African-American and White Men Across Gleason Scores. Eur Urol. 2019. doi: 10.1016/j.eururo.2019.01.010 30683576
41. Tonon L, Fromont G, Boyault S, Thomas E, Ferrari A, Sertier AS, et al. Mutational Profile of Aggressive, Localised Prostate Cancer from African Caribbean Men Versus European Ancestry Men. Eur Urol. 2019;75(1):11–5. Epub 2018/09/25. doi: 10.1016/j.eururo.2018.08.026 30245085
42. Faisal FA, Kaur HB, Tosoian JJ, Tomlins SA, Schaeffer EM, Lotan TL. SPINK1 expression is enriched in African American prostate cancer but is not associated with altered immune infiltration or oncologic outcomes post-prostatectomy. Prostate Cancer Prostatic Dis. 2019. doi: 10.1038/s41391-019-0139-0 30850708
43. Keenan T, Moy B, Mroz EA, Ross K, Niemierko A, Rocco JW, et al. Comparison of the Genomic Landscape Between Primary Breast Cancer in African American Versus White Women and the Association of Racial Differences With Tumor Recurrence. J Clin Oncol. 2015;33(31):3621–7. doi: 10.1200/JCO.2015.62.2126 26371147
44. Krishnan B, Rose TL, Kardos J, Milowsky MI, Kim WY. Intrinsic Genomic Differences Between African American and White Patients With Clear Cell Renal Cell Carcinoma. JAMA Oncol. 2016. doi: 10.1001/jamaoncol.2016.0005 27010573
45. Schumacher SE, Shim BY, Corso G, Ryu MH, Kang YK, Roviello F, et al. Somatic copy number alterations in gastric adenocarcinomas among Asian and Western patients. PLoS One. 2017;12(4):e0176045. doi: 10.1371/journal.pone.0176045 28426752
46. Huo D, Hu H, Rhie SK, Gamazon ER, Cherniack AD, Liu J, et al. Comparison of Breast Cancer Molecular Features and Survival by African and European Ancestry in The Cancer Genome Atlas. JAMA Oncol. 2017. doi: 10.1001/jamaoncol.2017.0595 28472234
47. Yuan J, Hu Z, Mahal BA, Zhao SD, Kensler KH, Pi J, et al. Integrated Analysis of Genetic Ancestry and Genomic Alterations across Cancers. Cancer Cell. 2018;34(4):549–60 e9. doi: 10.1016/j.ccell.2018.08.019 30300578
48. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9. doi: 10.1038/ng1847 16862161
49. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–59. 10835412
50. Sankararaman S, Sridhar S, Kimmel G, Halperin E. Estimating local ancestry in admixed populations. Am J Hum Genet. 2008;82(2):290–303. doi: 10.1016/j.ajhg.2007.09.022 18252211
51. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415–21. doi: 10.1038/nature12477 23945592
52. Rosenthal R, McGranahan N, Herrero J, Taylor BS, Swanton C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 2016;17:31. doi: 10.1186/s13059-016-0893-4 26899170
53. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016;22(3):298–305. doi: 10.1038/nm.4045 26855148
54. Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, et al. Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol. 2012;30(5):413–21. doi: 10.1038/nbt.2203 22544022
55. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N, et al. Replication stress links structural and numerical cancer chromosomal instability. Nature. 2013;494(7438):492–6. doi: 10.1038/nature11935 23446422
56. Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011;12(4):R41. doi: 10.1186/gb-2011-12-4-r41 21527027
57. Consortium GT, Laboratory DA, Coordinating Center -Analysis Working G, Statistical Methods groups-Analysis Working G, Enhancing Gg, Fund NIHC, et al. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–13. doi: 10.1038/nature24277 29022597
58. Mancuso N, Gayther S, Gusev A, Zheng W, Penney KL, Kote-Jarai Z, et al. Large-scale transcriptome-wide association study identifies new prostate cancer risk regions. Nat Commun. 2018;9(1):4079. doi: 10.1038/s41467-018-06302-1 30287866
59. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017;45(D1):D896–D901. doi: 10.1093/nar/gkw1133 27899670
60. Ernst J, Kellis M. ChromHMM: automating chromatin-state discovery and characterization. Nat Methods. 2012;9(3):215–6. doi: 10.1038/nmeth.1906 22373907
61. Valdes-Mora F, Gould CM, Colino-Sanguino Y, Qu W, Song JZ, Taylor KM, et al. Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer. Nat Commun. 2017;8(1):1346. doi: 10.1038/s41467-017-01393-8 29116202
62. Chiu HS, Somvanshi S, Patel E, Chen TW, Singh VP, Zorman B, et al. Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Rep. 2018;23(1):297–312 e12. doi: 10.1016/j.celrep.2018.03.064 29617668
63. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510(7504):278–82. doi: 10.1038/nature13229 24759320
64. Zhang Y, Pitchiaya S, Cieslik M, Niknafs YS, Tien JC, Hosono Y, et al. Analysis of the androgen receptor-regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat Genet. 2018;50(6):814–24. doi: 10.1038/s41588-018-0120-1 29808028
65. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol. 2011;29(8):742–9. Epub 2011/08/02. doi: 10.1038/nbt.1914 21804560
66. Takayama K, Horie-Inoue K, Katayama S, Suzuki T, Tsutsumi S, Ikeda K, et al. Androgen-responsive long noncoding RNA CTBP1-AS promotes prostate cancer. Embo j. 2013;32(12):1665–80. Epub 2013/05/07. doi: 10.1038/emboj.2013.99 23644382
67. Prensner JR, Chen W, Iyer MK, Cao Q, Ma T, Han S, et al. PCAT-1, a long noncoding RNA, regulates BRCA2 and controls homologous recombination in cancer. Cancer Res. 2014;74(6):1651–60. doi: 10.1158/0008-5472.CAN-13-3159 24473064
68. Guo H, Ahmed M, Zhang F, Yao CQ, Li S, Liang Y, et al. Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nat Genet. 2016;48(10):1142–50. doi: 10.1038/ng.3637 27526323
69. Han Y, Rand KA, Hazelett DJ, Ingles SA, Kittles RA, Strom SS, et al. Prostate Cancer Susceptibility in Men of African Ancestry at 8q24. J Natl Cancer Inst. 2016;108(7). doi: 10.1093/jnci/djv431 26823525
70. Cho SW, Xu J, Sun R, Mumbach MR, Carter AC, Chen YG, et al. Promoter of lncRNA Gene PVT1 Is a Tumor-Suppressor DNA Boundary Element. Cell. 2018;173(6):1398–412.e22. Epub 2018/05/08. doi: 10.1016/j.cell.2018.03.068 29731168
71. Sartor AO, Armstrong A, Ahaghotu C, McLeod D, Cooperberg M, Penson D, et al. Overall survival analysis of African-American and Caucasian patients receiving Sipuleucel-T: Preliminary data from the PROCEED registry. The Journal of Urology. 2017;197(4):e456–e7.
72. Li Q, Stram A, Chen C, Kar S, Gayther S, Pharoah P, et al. Expression QTL-based analyses reveal candidate causal genes and loci across five tumor types. Hum Mol Genet. 2014;23(19):5294–302. Epub 2014/06/08. doi: 10.1093/hmg/ddu228 24907074
73. Thibodeau SN, French AJ, McDonnell SK, Cheville J, Middha S, Tillmans L, et al. Identification of candidate genes for prostate cancer-risk SNPs utilizing a normal prostate tissue eQTL data set. Nat Commun. 2015;6:8653. Epub 2015/11/28. doi: 10.1038/ncomms9653 26611117
74. Han Y, Hazelett DJ, Wiklund F, Schumacher FR, Stram DO, Berndt SI, et al. Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions. Human molecular genetics. 2015;24(19):5603–18. Epub 2015/07/10. doi: 10.1093/hmg/ddv269 26162851
75. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22(9):1790–7. doi: 10.1101/gr.137323.112 22955989
76. Sur I, Tuupanen S, Whitington T, Aaltonen LA, Taipale J. Lessons from functional analysis of genome-wide association studies. Cancer Res. 2013;73(14):4180–4. doi: 10.1158/0008-5472.CAN-13-0789 23832660
77. Han Y, Rand KA, Hazelett DJ, Ingles SA, Kittles RA, Strom SS, et al. Prostate Cancer Susceptibility in Men of African Ancestry at 8q24. Journal of the National Cancer Institute. 2016;108(7):djv431. doi: 10.1093/jnci/djv431 26823525
78. Guo H, Ahmed M, Zhang F, Yao CQ, Li S, Liang Y, et al. Modulation of long noncoding RNAs by risk SNPs underlying genetic predispositions to prostate cancer. Nature Genetics. 2016;48:1142. doi: 10.1038/ng.3637 27526323
79. Spratt DE, Chan T, Waldron L, Speers C, Feng FY, Ogunwobi OO, et al. Racial/Ethnic Disparities in Genomic Sequencing. JAMA Oncol. 2016;2(8):1070–4. doi: 10.1001/jamaoncol.2016.1854 27366979
80. Rosenbaum PR, Rubin DB. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika. 1983;70(1):41–55.
81. Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017;355(6322). doi: 10.1126/science.aaf8399 28104840
82. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes. 2007;7(4):574–8. doi: 10.1111/j.1471-8286.2007.01758.x 18784791
83. Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour. 2009;9(5):1322–32. doi: 10.1111/j.1755-0998.2009.02591.x 21564903
84. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B (Methodological). 1995;57(1):289–300.
85. Ellrott K, Bailey MH, Saksena G, Covington KR, Kandoth C, Stewart C, et al. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Syst. 2018;6(3):271–81 e7. doi: 10.1016/j.cels.2018.03.002 29596782
86. Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, et al. Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Rep. 2018;23(1):227–38 e3. doi: 10.1016/j.celrep.2018.03.050 29617662
87. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8 25516281
88. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. doi: 10.1101/gr.1239303 14597658
89. Mas-Ponte D, Carlevaro-Fita J, Palumbo E, Hermoso Pulido T, Guigo R, Johnson R. LncATLAS database for subcellular localization of long noncoding RNAs. RNA. 2017;23(7):1080–7. doi: 10.1261/rna.060814.117 28386015
90. Maehara K, Ohkawa Y. agplus: a rapid and flexible tool for aggregation plots. Bioinformatics. 2015;31(18):3046–7. doi: 10.1093/bioinformatics/btv322 25995229
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 2
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Planarian EGF repeat-containing genes megf6 and hemicentin are required to restrict the stem cell compartment
- Evolutionary dynamics of microRNA target sites across vertebrate evolution
- Rab11 activation by Ik2 kinase is required for dendrite pruning in Drosophila sensory neurons
- Identification of a novel base J binding protein complex involved in RNA polymerase II transcription termination in trypanosomes