Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila
Autoři:
Jean-Baptiste Masson aff001; Francois Laurent aff002; Albert Cardona aff001; Chloe Barre aff002; Nicolas Skatchkovsky aff002; Marta Zlatic aff001; Tihana Jovanic aff001
Působiště autorů:
Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
aff001; Decision and Bayesian Computation, USR 3756 (C3BI/DBC) & Neuroscience Department, Institut Pasteur & CNRS, Paris, France
aff002; Department of Physiology, Development, and Neuroscience, Cambridge University, Cambridge, United Kingdom
aff003; MRC Laboratory of Molecular Biology, Trumpington, Cambridge, United Kingdom
aff004; Department of Zoology, Cambridge University, Cambridge, United Kingdom
aff005; Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, Gif-sur-Yvette, France
aff006
Vyšlo v časopise:
Identifying neural substrates of competitive interactions and sequence transitions during mechanosensory responses in Drosophila. PLoS Genet 16(2): e32767. doi:10.1371/journal.pgen.1008589
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008589
Souhrn
Nervous systems have the ability to select appropriate actions and action sequences in response to sensory cues. The circuit mechanisms by which nervous systems achieve choice, stability and transitions between behaviors are still incompletely understood. To identify neurons and brain areas involved in controlling these processes, we combined a large-scale neuronal inactivation screen with automated action detection in response to a mechanosensory cue in Drosophila larva. We analyzed behaviors from 2.9x105 larvae and identified 66 candidate lines for mechanosensory responses out of which 25 for competitive interactions between actions. We further characterize in detail the neurons in these lines and analyzed their connectivity using electron microscopy. We found the neurons in the mechanosensory network are located in different regions of the nervous system consistent with a distributed model of sensorimotor decision-making. These findings provide the basis for understanding how selection and transition between behaviors are controlled by the nervous system.
Klíčová slova:
Decision making – Drosophila melanogaster – Electron microscopy – Larvae – Motor neurons – Nervous system – Neurons – Sensory neurons
Zdroje
1. Cisek P. Cortical mechanisms of action selection: the affordance competition hypothesis. Philosophical Transactions of the Royal Society B: Biological Sciences. 2007;362: 1585–1599. doi: 10.1098/rstb.2007.2054 17428779
2. Reyn von CR, Breads P, Peek MY, Zheng GZ, Williamson WR, Yee AL, et al. A spike-timing mechanism for action selection. Nat Neurosci. 2014;17: 962–970. doi: 10.1038/nn.3741 24908103
3. Cisek P, Kalaska JF. Neural Mechanisms for Interacting with a World Full of Action Choices. Annu Rev Neurosci. 2010;33: 269–298. doi: 10.1146/annurev.neuro.051508.135409 20345247
4. Gold JI, Shadlen MN. The neural basis of decision making. Annu Rev Neurosci. 2007;30: 535–574. doi: 10.1146/annurev.neuro.29.051605.113038 17600525
5. Gaudry Q, Kristan WB. Behavioral choice by presynaptic inhibition of tactile sensory terminals. Nat Neurosci. 2009;12: 1450–1457. doi: 10.1038/nn.2400 19801989
6. Kristan WB. Neuronal Decision-Making Circuits. Current Biology. 2008;18: R928–R932. doi: 10.1016/j.cub.2008.07.081 18957243
7. Lebedev MA, Wise SP. Insights into seeing and grasping: distinguishing the neural correlates of perception and action. Behav Cogn Neurosci Rev. 2002;1: 108–129. doi: 10.1177/1534582302001002002 17715589
8. Livant WP. George A. Miller, Eugene Galanter, and Karl H Pribram, Plans and the structure of behavior. New York: Henry Holt, 1960. Syst Res. 2007;5: 341–342. doi: 10.1002/bs.3830050409
9. Miller GA, Galanter E, Pribram KH. Plans and the Structure of Behavior. Holt R, Winston, editors. New York; 1960.
10. Jovanic T, Schneider-Mizell CM, Shao M, Masson J-B, Denisov G, Fetter RD, et al. Competitive Disinhibition Mediates Behavioral Choice and Sequences in Drosophila. Cell. Elsevier; 2016;167: 858–870.e19. doi: 10.1016/j.cell.2016.09.009 27720450
11. Lasley KS. The problem of serial order in behavior. Jeffress LA, editor. New York: Wiley; 1951 pp. 112–131.
12. Seeds AM, Ravbar P, Chung P, Hampel S, Midgley FM, Mensh BD, et al. A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. eLife. 2014;3: e02951. doi: 10.7554/eLife.02951 25139955
13. Long MA, Jin DZ, Fee MS. Support for a synaptic chain model of neuronal sequence generation. Nature. 2010;468: 394–399. doi: 10.1038/nature09514 20972420
14. James W. The Principles of Psychology. London: Macmillan; 1890.
15. Adams J, (null). Learning of movement sequences. Psychological Bulletin. 1984;93: 3–28.
16. Manning A. The Sexual Behaviour of Two Sibling Drosophila Species. Behaviour. Brill; 1959;15: 123–145.
17. Manoli DS, Baker BS. Median bundle neurons coordinate behaviours during Drosophila male courtship. Nature. Nature Publishing Group; 2004;430: 564–569. doi: 10.1038/nature02713 15282607
18. McKellar CE, Lillvis JL, Bath DE, Fitzgerald JE, Cannon JG, Simpson JH, et al. Threshold-Based Ordering of Sequential Actions during Drosophila Courtship. Curr Biol. 2019;29: 426–434.e6. doi: 10.1016/j.cub.2018.12.019 30661796
19. Jenett A, Rubin GM, Ngo T-TB, Shepherd D, Murphy C, Dionne H, et al. A GAL4-Driver Line Resource for Drosophila Neurobiology. Cell Rep. 2012;2: 991–1001. doi: 10.1016/j.celrep.2012.09.011 23063364
20. Li H-H, Kroll JR, Lennox SM, Ogundeyi O, Jeter J, Depasquale G, et al. A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Rep. 2014;8: 897–908. doi: 10.1016/j.celrep.2014.06.065 25088417
21. Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M, et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature. 2015;520: 633–639. doi: 10.1038/nature14297 25896325
22. Schneider-Mizell CM, Gerhard S, Longair M, Kazimiers T, Li F, Zwart MF, et al. Quantitative neuroanatomy for connectomics in Drosophila. eLife. 2016;5: 1133. doi: 10.7554/eLife.12059 26990779
23. Heckscher ES, Lockery SR, Doe CQ. Characterization of Drosophila larval crawling at the level of organism, segment, and somatic body wall musculature. J Neurosci. Society for Neuroscience; 2012;32: 12460–12471. doi: 10.1523/JNEUROSCI.0222-12.2012 22956837
24. Zwart MF, Pulver SR, Truman JW, Fushiki A, Fetter RD, Cardona A, et al. Selective Inhibition Mediates the Sequential Recruitment of Motor Pools. Neuron. 2016;91: 615–628. doi: 10.1016/j.neuron.2016.06.031 27427461
25. Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, et al. The complete connectome of a learning and memory centre in an insect brain. Nature. 2017;548: 175–182. doi: 10.1038/nature23455 28796202
26. Kohsaka H, Zwart MF, Fushiki A, Fetter RD, Truman JW, Cardona A, et al. Regulation of forward and backward locomotion through intersegmental feedback circuits in Drosophila larvae. Nat Commun. Nature Publishing Group; 2019;10: 2654–11. doi: 10.1038/s41467-019-10695-y 31201326
27. Fushiki A, Zwart MF, Kohsaka H, Fetter RD, Cardona A, Nose A, et al. A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. eLife. eLife Sciences Publications Limited; 2016;5: e13253. doi: 10.7554/eLife.13253 26880545
28. Carreira-Rosario A, Zarin AA, Clark MQ, Manning L, Fetter RD, Cardona A, et al. MDN brain descending neurons coordinately activate backward and inhibit forward locomotion. eLife. eLife Sciences Publications Limited; 2018;7: 57. doi: 10.7554/eLife.38554 30070205
29. Zarin AA, Mark B, Cardona A, Litwin-Kumar A, Doe CQ. A Drosophila larval premotor/motor neuron connectome generating two behaviors via distinct spatio-temporal muscle activity. bioRxiv. Cold Spring Harbor Laboratory; 2019;9: 617977. doi: 10.1101/617977
30. Burgos A, Honjo K, Ohyama T, Qian CS, Shin GJ-E, Gohl DM, et al. Nociceptive interneurons control modular motor pathways to promote escape behavior in Drosophila. eLife. eLife Sciences Publications Limited; 2018;7: 1557. doi: 10.7554/eLife.26016 29528286
31. Ohyama T, Jovanic T, Denisov G, Dang TC, Hoffmann D, Kerr RA, et al. High-Throughput Analysis of Stimulus-Evoked Behaviors in Drosophila Larva Reveals Multiple Modality-Specific Escape Strategies. Brembs B, editor. PLoS ONE. Public Library of Science; 2013;8: e71706. doi: 10.1371/journal.pone.0071706 23977118
32. Bodmer R, Jan Y-N. Morphological differentiation of the embryonic peripheral neurons in Drosophila. Rouxs Arch Dev Biol. Springer-Verlag; 1987;196: 69–77. doi: 10.1007/BF00402027 28305460
33. Grueber WB, Ye B, Yang C-H, Younger S, Borden K, Jan LY, et al. Projections of Drosophila multidendritic neurons in the central nervous system: links with peripheral dendrite morphology. Development. The Company of Biologists Limited; 2007;134: 55–64. doi: 10.1242/dev.02666 17164414
34. Merritt DJ, Whitington PM. Central projections of sensory neurons in the Drosophila embryo correlate with sensory modality, soma position, and proneural gene function. J Neurosci. Society for Neuroscience; 1995;15: 1755–1767.
35. Tsubouchi A, Caldwell JC, Tracey WD. Dendritic filopodia, Ripped Pocket, NOMPC, and NMDARs contribute to the sense of touch in Drosophila larvae. Curr Biol. 2012;22: 2124–2134. doi: 10.1016/j.cub.2012.09.019 23103192
36. Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng LE, et al. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature. 2013;493: 221–225. doi: 10.1038/nature11685 23222543
37. Kernan M, Cowan D, Zuker C. Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron. 1994;12: 1195–1206. doi: 10.1016/0896-6273(94)90437-5 8011334
38. Jovanic T, Winding M, Cardona A, Truman JW, Gershow M, Zlatic M. Neural Substrates of Drosophila Larval Anemotaxis. Curr Biol. 2019;29: 554–566.e4. doi: 10.1016/j.cub.2019.01.009 30744969
39. Takagi S, Cocanougher BT, Niki S, Miyamoto D, Kohsaka H, Kazama H, et al. Divergent Connectivity of Homologous Command-like Neurons Mediates Segment-Specific Touch Responses in Drosophila. Neuron. 2017;96: 1373–1387.e6. doi: 10.1016/j.neuron.2017.10.030 29198754
40. Nern A, Pfeiffer BD, Rubin GM. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci USA. National Acad Sciences; 2015;112: E2967–76. doi: 10.1073/pnas.1506763112 25964354
41. Gerhard S, Andrade I, Fetter RD, Cardona A, Schneider-Mizell CM. Conserved neural circuit structure across Drosophila larval development revealed by comparative connectomics. eLife. eLife Sciences Publications Limited; 2017;6: 2452. doi: 10.7554/eLife.29089 29058674
42. Rosenbaum DA, Cohen RG, Jax SA, Weiss DJ, van der Wel R. The problem of serial order in behavior: Lashley’s legacy. Human Movement Science. 2007;26: 525–554. doi: 10.1016/j.humov.2007.04.001 17698232
43. Cisek P. Making decisions through a distributed consensus. Current Opinion in Neurobiology. Elsevier Current Trends; 2012;22: 927–936. doi: 10.1016/j.conb.2012.05.007 22683275
44. Briggman KL, Kristan WB. Imaging dedicated and multifunctional neural circuits generating distinct behaviors. The Journal of neuroscience. 2006.
45. Ledberg A, Bressler SL, Ding M, Coppola R, Nakamura R. Large-scale visuomotor integration in the cerebral cortex. Cereb Cortex. 2007;17: 44–62. doi: 10.1093/cercor/bhj123 16452643
46. Pezzulo G, Castelfranchi C. Thinking as the control of imagination: a conceptual framework for goal-directed systems. Psychol Res. 2009;73: 559–577. doi: 10.1007/s00426-009-0237-z 19347359
47. Berck ME, Khandelwal A, Claus L, Hernandez-Nunez L, Si G, Tabone CJ, et al. The wiring diagram of a glomerular olfactory system. 2016 Jan. Report No.: http://dx.doi.org/10.1101/037721. doi: 10.1101/037721
48. Heckscher ES, Zarin AA, Faumont S, Clark MQ, Manning L, Fushiki A, et al. Even-Skipped(+) Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude. Neuron. 2015;88: 314–329. doi: 10.1016/j.neuron.2015.09.009 26439528
49. Schlegel P, Texada MJ, Miroschnikow A, Schoofs A, Hückesfeld S, Peters M, et al. Synaptic transmission parallels neuromodulation in a central food-intake circuit. eLife. eLife Sciences Publications Limited; 2016;5: 462. doi: 10.7554/eLife.16799 27845623
50. Pfeiffer BD, Jenett A, Hammonds AS, Ngo T-TB, Misra S, Murphy C, et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci USA. National Acad Sciences; 2008;105: 9715–9720. doi: 10.1073/pnas.0803697105 18621688
51. Zhang W, Yan Z, Jan LY, Jan Y-N. Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of Drosophila larvae. Proc Natl Acad Sci USA. National Acad Sciences; 2013;110: 13612–13617. doi: 10.1073/pnas.1312477110 23898199
52. Kwon Y, Shen WL, Shim H-S, Montell C. Fine thermotactic discrimination between the optimal and slightly cooler temperatures via a TRPV channel in chordotonal neurons. J Neurosci. Society for Neuroscience; 2010;30: 10465–10471. doi: 10.1523/JNEUROSCI.1631-10.2010 20685989
53. Sweeney ST, Broadie K, Keane J, Niemann H, O'Kane CJ. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron. 1995;14: 341–351. doi: 10.1016/0896-6273(95)90290-2 7857643
54. Saalfeld S, Cardona A, Hartenstein V, Tomancak P. CATMAID: collaborative annotation toolkit for massive amounts of image data. Bioinformatics. Oxford University Press; 2009;25: 1984–1986. doi: 10.1093/bioinformatics/btp266 19376822
55. Swierczek NA, Giles AC, Rankin CH, Kerr RA. High-throughput behavioral analysis in C. elegans. Nat Methods. 2011;8: 592–598. doi: 10.1038/nmeth.1625 21642964
56. Kabra M, Robie AA, Rivera-Alba M, Branson S, Branson K. JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Methods. 2012;10: 64–67. doi: 10.1038/nmeth.2281 23202433
57. Bishop C. Pattern recognition and machine learning. Springer; 2006.
58. Schulze A, Gomez-Marin A, Rajendran VG, Lott G, Musy M, Ahammad P, et al. Dynamical feature extraction at the sensory periphery guides chemotaxis. eLife. eLife Sciences Publications Limited; 2015;4: 1129. doi: 10.7554/eLife.06694 26077825
59. Vogelstein JT, Park Y, Ohyama T, Kerr RA, Truman JW, Priebe CE, et al. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science. 2014;344: 386–392. doi: 10.1126/science.1250298 24674869
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 2
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Je libo čepici místo mozkového implantátu?
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- AI může chirurgům poskytnout cenná data i zpětnou vazbu v reálném čase
- Nová metoda odlišení nádorové tkáně může zpřesnit resekci glioblastomů
Nejčtenější v tomto čísle
- Planarian EGF repeat-containing genes megf6 and hemicentin are required to restrict the stem cell compartment
- Evolutionary dynamics of microRNA target sites across vertebrate evolution
- Rab11 activation by Ik2 kinase is required for dendrite pruning in Drosophila sensory neurons
- Identification of a novel base J binding protein complex involved in RNA polymerase II transcription termination in trypanosomes