Low dose ionizing radiation strongly stimulates insertional mutagenesis in a γH2AX dependent manner
Autoři:
Alex N. Zelensky aff001; Mascha Schoonakker aff001; Inger Brandsma aff001; Marcel Tijsterman aff003; Dik C. van Gent aff001; Jeroen Essers aff001; Roland Kanaar aff001
Působiště autorů:
Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
aff001; Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
aff002; Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
aff003; Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
aff004; Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
aff005
Vyšlo v časopise:
Low dose ionizing radiation strongly stimulates insertional mutagenesis in a γH2AX dependent manner. PLoS Genet 16(1): e32767. doi:10.1371/journal.pgen.1008550
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008550
Souhrn
Extrachromosomal DNA can integrate into the genome with no sequence specificity producing an insertional mutation. This process, which is referred to as random integration (RI), requires a double stranded break (DSB) in the genome. Inducing DSBs by various means, including ionizing radiation, increases the frequency of integration. Here we report that non-lethal physiologically relevant doses of ionizing radiation (10–100 mGy), within the range produced by medical imaging equipment, stimulate RI of transfected and viral episomal DNA in human and mouse cells with an extremely high efficiency. Genetic analysis of the stimulated RI (S-RI) revealed that it is distinct from the background RI, requires histone H2AX S139 phosphorylation (γH2AX) and is not reduced by DNA polymerase θ (Polq) inactivation. S-RI efficiency was unaffected by the main DSB repair pathway (homologous recombination and non-homologous end joining) disruptions, but double deficiency in MDC1 and 53BP1 phenocopies γH2AX inactivation. The robust responsiveness of S-RI to physiological amounts of DSBs can be exploited for extremely sensitive, macroscopic and direct detection of DSB-induced mutations, and warrants further exploration in vivo to determine if the phenomenon has implications for radiation risk assessment.
Klíčová slova:
DNA – DNA damage – Electroporation – Gene targeting – HeLa cells – Non-homologous end joining – Transfection – Ionizing radiation
Zdroje
1. Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: past, present and future. Oncogene. Nature Publishing Group; 2005;24: 7656–7672. doi: 10.1038/sj.onc.1209043 16299527
2. Chen Y, Williams V, Filippova M, Filippov V, Duerksen-Hughes P. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration. Cancers. Multidisciplinary Digital Publishing Institute; 2014;6: 2155–2186. doi: 10.3390/cancers6042155 25340830
3. Capecchi MR. Altering the genome by homologous recombination. Science. 1989;244: 1288–1292. doi: 10.1126/science.2660260 2660260
4. Nabetani A, Ishikawa F. Unusual telomeric DNAs in human telomerase-negative immortalized cells. Mol Cell Biol. 2009;29: 703–713. doi: 10.1128/MCB.00603-08 19015236
5. Schnepp BC, Jensen RL, Chen C-L, Johnson PR, Clark KR. Characterization of adeno-associated virus genomes isolated from human tissues. J Virol. American Society for Microbiology; 2005;79: 14793–14803. doi: 10.1128/JVI.79.23.14793-14803.2005 16282479
6. Bergsmedh A, Szeles A, Henriksson M, Bratt A, Folkman MJ, Spetz AL, et al. Horizontal transfer of oncogenes by uptake of apoptotic bodies. Proc Natl Acad Sci USA. 2001;98: 6407–6411. doi: 10.1073/pnas.101129998 11353826
7. Shibata Y, Kumar P, Layer R, Willcox S, Gagan JR, Griffith JD, et al. Extrachromosomal microDNAs and chromosomal microdeletions in normal tissues. Science. 2012;336: 82–86. doi: 10.1126/science.1213307 22403181
8. Würtele H, Little KCE, Chartrand P. Illegitimate DNA integration in mammalian cells. Gene Ther. Nature Publishing Group; 2003;10: 1791–1799. doi: 10.1038/sj.gt.3302074 12960968
9. Kamekawa H, Kurosawa A, Umehara M, Toyoda E, Adachi N. Endogenous Factors Causative of Spontaneous DNA Damage that Leads to Random Integration in Human Cells. Gene Technology. 2013;02: 1–5. doi: 10.4172/2329-6682.1000105
10. Hillman GG, Xu M, Wang Y, Wright JL, Lu X, Kallinteris NL, et al. Radiation improves intratumoral gene therapy for induction of cancer vaccine in murine prostate carcinoma. Hum Gene Ther. 2003;14: 763–775. doi: 10.1089/104303403765255156 12804139
11. Kiechle M, Manivasakam P, Eckardt-Schupp F, Schiestl RH, Friedl AA. Promoter-trapping in Saccharomyces cerevisiae by radiation-assisted fragment insertion. Nucleic Acids Res. 2002;30: e136. doi: 10.1093/nar/gnf136 12490727
12. Stevens CW, Puppi M, Cerniglia GJ. Time-dose relationships in radiation-enhanced integration. Int J Radiat Biol. 2001;77: 841–846. doi: 10.1080/09553000110053882 11571017
13. Zeng M, Cerniglia GJ, Eck SL, Stevens CW. High-efficiency stable gene transfer of adenovirus into mammalian cells using ionizing radiation. Hum Gene Ther. 1997;8: 1025–1032. doi: 10.1089/hum.1997.8.9-1025 9189760
14. Iwamoto R, Fushimi K, Hiraki Y, Namba M. Enhancement of DNA-transfection frequency by X-rays. Acta Med Okayama. 1997;51: 19–23. doi: 10.18926/AMO/30807 9057931
15. Stevens CW, Zeng M, Cerniglia GJ. Ionizing radiation greatly improves gene transfer efficiency in mammalian cells. Hum Gene Ther. 1996;7: 1727–1734. doi: 10.1089/hum.1996.7.14-1727 8886843
16. Alexander IE, Russell DW, Miller AD. DNA-damaging agents greatly increase the transduction of nondividing cells by adeno-associated virus vectors. J Virol. 1994;68: 8282–8287. 7966621
17. Rubin JS. Effect of gamma rays on efficiency of gene transfer in DNA repair-proficient and -deficient cell lines. Somat Cell Mol Genet. 1988;14: 613–621. doi: 10.1007/bf01535315 3194800
18. Perez CF, Botchan MR, Tobias CA. DNA-mediated gene transfer efficiency is enhanced by ionizing and ultraviolet irradiation of rodent cells in vitro. I. Kinetics of enhancement. Radiat Res. 1985;104: 200–213. 3001817
19. Debenham PG, Webb MB. The effect of X-rays and ultraviolet light on DNA-mediated gene transfer in mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1984;46: 555–568. doi: 10.1080/09553008414551761 6394531
20. Yang TC, Tobias CA, Blakely EA, Craise LM, Madfes IS, Perez C, et al. Enhancement effects of high-energy neon particles on the viral transformation of mouse C3H1OT1/2 cells in vitro. Radiat Res. 1980;81: 208–223. 6244601
21. Coggin JH. Enhanced virus transformation of hamster embryo cells in vitro. J Virol. American Society for Microbiology (ASM); 1969;3: 458–462. 5786176
22. Pollock EJ, Todaro GJ. Radiation enhancement of SV40 transformation in 3T3 and human cells. Nature. 1968;219: 520–521. doi: 10.1038/219520a0 4299257
23. Stoker M. EFFECT OF X-IRRADIATION ON SUSCEPTIBILITY OF CELLS TO TRANSFORMATION BY POLYOMA VIRUS. Nature. 1963;200: 756–758. doi: 10.1038/200756a0 14087008
24. Aratani Y, Andoh T, Koyama H. Effects of DNA topoisomerase inhibitors on nonhomologous and homologous recombination in mammalian cells. Mutat Res. 1996;362: 181–191. doi: 10.1016/0921-8777(95)00049-6 8596537
25. Hars ES, Lyu YL, Lin C-P, Liu LF. Role of apoptotic nuclease caspase-activated DNase in etoposide-induced treatment-related acute myelogenous leukemia. 2006;66: 8975–8979. doi: 10.1158/0008-5472.CAN-06-1724 16982737
26. Shcherbakova OG, Filatov MV. Camptothecin enhances random integration of transfected DNA into the genome of mammalian cells. 2000;1495: 1–3. doi: 10.1016/s0167-4889(99)00151-2 10634926
27. Su ZZ, Zhang PQ, Fisher PB. Enhancement of viral and DNA mediated transformation of cloned rat embryo fibroblast cells by 3-aminobenzamide. Mol Carcinog. 1990;3: 309–318. doi: 10.1002/mc.2940030512 2123109
28. Postel EH. Enhancement of genetic transformation frequencies of mammalian cell cultures by damage to the cell DNA. Mol Gen Genet. 1985;201: 136–139. doi: 10.1007/bf00398000 2997579
29. Casto BC, Pieczynski WJ, Janosko N, Dipaolo JA. Significance of treatment interval and DNA repair in the enhancement of viral transformation by chemical carcinogens and mutagens. Chem Biol Interact. 1976;13: 105–125. doi: 10.1016/0009-2797(76)90001-6 816474
30. Kahmann R, Basse C. REMI (Restriction Enzyme Mediated Integration) and its Impact on the Isolation of Pathogenicity Genes in Fungi Attacking Plants. European Journal of Plant Pathology. 2014;105: 221–229.
31. Lin Y, Waldman AS. Capture of DNA sequences at double-strand breaks in mammalian chromosomes. Genetics. 2001;158: 1665–1674. 11514454
32. Schiestl RH, Petes TD. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. 1991;88: 7585–7589. doi: 10.1073/pnas.88.17.7585 1881899
33. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 2015;33: 187–197. doi: 10.1038/nbt.3117 25513782
34. Lin EC. Radiation risk from medical imaging. Mayo Clin Proc. 2010;85: 1142–6– quiz 1146. doi: 10.4065/mcp.2010.0260 21123642
35. Kaeppel C, Beattie SG, Fronza R, van Logtenstein R, Salmon F, Schmidt S, et al. A largely random AAV integration profile after LPLD gene therapy. Nat Med. 2013;19: 889–891. doi: 10.1038/nm.3230 23770691
36. Miller DG, Petek LM, Russell DW. Adeno-associated virus vectors integrate at chromosome breakage sites. Nat Genet. 2004;36: 767–773. doi: 10.1038/ng1380 15208627
37. Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med. 2006;12: 348–353. doi: 10.1038/nm1365 16491086
38. Vargas J, Gusella GL, Najfeld V, Klotman ME, Cara A. Novel integrase-defective lentiviral episomal vectors for gene transfer. Hum Gene Ther. 2004;15: 361–372. doi: 10.1089/104303404322959515 15053861
39. Leavitt AD, Robles G, Alesandro N, Varmus HE. Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection. J Virol. 1996;70: 721–728. 8551608
40. Wang X, Wang Y, Wu X, Wang J, Wang Y, Qiu Z, et al. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors. Nat Biotechnol. 2015;33: 175–178. doi: 10.1038/nbt.3127 25599175
41. Gabriel R, Lombardo A, Arens A, Miller JC, Genovese P, Kaeppel C, et al. An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. 2011;29: 816–823. doi: 10.1038/nbt.1948 21822255
42. Aymard F, Bugler B, Schmidt CK, Guillou E, Caron P, Briois S, et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nature Structural and Molecular Biology. 2014;21: 366–374. doi: 10.1038/nsmb.2796 24658350
43. Essers J, Hendriks RW, Swagemakers SM, Troelstra C, de Wit J, Bootsma D, et al. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell. 1997;89: 195–204. doi: 10.1016/s0092-8674(00)80199-3 9108475
44. Gao Y, Chaudhuri J, Zhu C, Davidson L, Weaver DT, Alt FW. A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity. 1998;9: 367–376. doi: 10.1016/s1074-7613(00)80619-6 9768756
45. Zelensky AN, Schimmel J, Kool H, Kanaar R, Tijsterman M. Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA. Nat Commun. Nature Publishing Group; 2017;8: 66. doi: 10.1038/s41467-017-00124-3 28687761
46. Saito S, Maeda R, Adachi N. Dual loss of human POLQ and LIG4 abolishes random integration. Nat Commun. 2017;8: 16112. doi: 10.1038/ncomms16112 28695890
47. Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci USA. National Academy of Sciences; 2002;99: 8173–8178. doi: 10.1073/pnas.122228699 12034884
48. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, et al. Genomic instability in mice lacking histone H2AX. Science. 2002;296: 922–927. doi: 10.1126/science.1069398 11934988
49. Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M, et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell. 2003;114: 359–370. doi: 10.1016/s0092-8674(03)00566-x 12914700
50. Franco S, Gostissa M, Zha S, Lombard DB, Murphy MM, Zarrin AA, et al. H2AX prevents DNA breaks from progressing to chromosome breaks and translocations. Mol Cell. 2006;21: 201–214. doi: 10.1016/j.molcel.2006.01.005 16427010
51. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. Journal of Biological Chemistry. 1998;273: 5858–5868. doi: 10.1074/jbc.273.10.5858 9488723
52. Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell. 2009;136: 420–434. doi: 10.1016/j.cell.2008.12.042 19203578
53. Mattiroli F, Vissers JHA, van Dijk WJ, Ikpa P, Citterio E, Vermeulen W, et al. RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling. Cell. 2012;150: 1182–1195. doi: 10.1016/j.cell.2012.08.005 22980979
54. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005;123: 1213–1226. doi: 10.1016/j.cell.2005.09.038 16377563
55. Toyoda E, Kurosawa A, Kamekawa H, Adachi N. Topoisomerase IIalpha inhibition following DNA transfection greatly enhances random integration in a human pre-B lymphocyte cell line. Biochem Biophys Res Commun. 2009;382: 492–496. doi: 10.1016/j.bbrc.2009.03.047 19285952
56. Bodley AL, Huang HC, Yu C, Liu LF. Integration of simian virus 40 into cellular DNA occurs at or near topoisomerase II cleavage hot spots induced by VM-26 (teniposide). Mol Cell Biol. 1993;13: 6190–6200. doi: 10.1128/mcb.13.10.6190 8413219
57. Stiff T, O'Driscoll M, Rief N, Iwabuchi K, Löbrich M, Jeggo PA. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res. 2004;64: 2390–2396. doi: 10.1158/0008-5472.can-03-3207 15059890
58. Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NMB, Orr AI, et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 2004;64: 9152–9159. doi: 10.1158/0008-5472.CAN-04-2727 15604286
59. Charrier J-D, Durrant SJ, Golec JMC, Kay DP, Knegtel RMA, MacCormick S, et al. Discovery of potent and selective inhibitors of ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase as potential anticancer agents. J Med Chem. 2011;54: 2320–2330. doi: 10.1021/jm101488z 21413798
60. Sarkaria JN, Tibbetts RS, Busby EC, Kennedy AP, Hill DE, Abraham RT. Inhibition of phosphoinositide 3-kinase related kinases by the radiosensitizing agent wortmannin. Cancer Res. 1998;58: 4375–4382. 9766667
61. Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O'Connor PM, et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. Journal of Biological Chemistry. 2000;275: 5600–5605. doi: 10.1074/jbc.275.8.5600 10681541
62. Zelensky AN, Sanchez H, Ristic D, Vidic I, van Rossum-Fikkert SE, Essers J, et al. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation. Nucleic Acids Res. 2013;41: 6475–6489. doi: 10.1093/nar/gkt375 23666627
63. Tsabar M, Mason JM, Chan Y-L, Bishop DK, Haber JE. Caffeine inhibits gene conversion by displacing Rad51 from ssDNA. Nucleic Acids Res. 2015;43: 6902–6918. doi: 10.1093/nar/gkv525 26019181
64. Tsabar M, Eapen VV, Mason JM, Memisoglu G, Waterman DP, Long MJ, et al. Caffeine impairs resection during DNA break repair by reducing the levels of nucleases Sae2 and Dna2. Nucleic Acids Res. 2015;43: 6889–6901. doi: 10.1093/nar/gkv520 26019182
65. Kleiner RE, Verma P, Molloy KR, Chait BT, Kapoor TM. Chemical proteomics reveals a γH2AX-53BP1 interaction in the DNA damage response. Nat Chem Biol. Nature Publishing Group; 2015;11: 807–814. doi: 10.1038/nchembio.1908 26344695
66. Wood JL, Singh N, Mer G, Chen J. MCPH1 functions in an H2AX-dependent but MDC1-independent pathway in response to DNA damage. Journal of Biological Chemistry. 2007;282: 35416–35423. doi: 10.1074/jbc.M705245200 17925396
67. Scully R, Xie A. Double strand break repair functions of histone H2AX. Mutat Res. 2013;750: 5–14. doi: 10.1016/j.mrfmmm.2013.07.007 23916969
68. Chen W-T, Alpert A, Leiter C, Gong F, Jackson SP, Miller KM. Systematic identification of functional residues in mammalian histone H2AX. Mol Cell Biol. 2013;33: 111–126. doi: 10.1128/MCB.01024-12 23109425
69. Revet I, Feeney L, Bruguera S, Wilson W, Dong TK, Oh DH, et al. Functional relevance of the histone gammaH2Ax in the response to DNA damaging agents. Proc Natl Acad Sci USA. National Academy of Sciences; 2011;108: 8663–8667. doi: 10.1073/pnas.1105866108 21555580
70. Sonoda E, Zhao GY, Kohzaki M, Dhar PK, Kikuchi K, Redon C, et al. Collaborative roles of gammaH2AX and the Rad51 paralog Xrcc3 in homologous recombinational repair. DNA Repair (Amst). 2007;6: 280–292. doi: 10.1016/j.dnarep.2006.10.025 17123873
71. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol. Nature Publishing Group; 2003;5: 675–679. doi: 10.1038/ncb1004 12792649
72. Xie A, Puget N, Shim I, Odate S, Jarzyna I, Bassing CH, et al. Control of sister chromatid recombination by histone H2AX. Mol Cell. 2004;16: 1017–1025. doi: 10.1016/j.molcel.2004.12.007 15610743
73. Xie A, Odate S, Chandramouly G, Scully R. H2AX post-translational modifications in the ionizing radiation response and homologous recombination. Cell Cycle. 2010;9: 3602–3610. doi: 10.4161/cc.9.17.12884 20703100
74. Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC, et al. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol. Nature Publishing Group; 2002;4: 993–997. doi: 10.1038/ncb884 12447390
75. Xie A, Kwok A, Scully R. Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nature Structural and Molecular Biology. 2009;16: 814–818. doi: 10.1038/nsmb.1640 19633669
76. Bhargava R, Carson CR, Lee G, Stark JM. Contribution of canonical nonhomologous end joining to chromosomal rearrangements is enhanced by ATM kinase deficiency. Proc Natl Acad Sci USA. National Academy of Sciences; 2017;114: 728–733. doi: 10.1073/pnas.1612204114 28057860
77. Feng Y-L, Xiang J-F, Liu S-C, Guo T, Yan G-F, Feng Y, et al. H2AX facilitates classical non-homologous end joining at the expense of limited nucleotide loss at repair junctions. Nucleic Acids Res. 2017;45: 10614–10633. doi: 10.1093/nar/gkx715 28977657
78. Bañuelos CA, Banáth JP, MacPhail SH, Zhao J, Eaves CA, O'Connor MD, et al. Mouse but not human embryonic stem cells are deficient in rejoining of ionizing radiation-induced DNA double-strand breaks. DNA Repair (Amst). 2008;7: 1471–1483. doi: 10.1016/j.dnarep.2008.05.005 18602349
79. Panier S, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. Nature Publishing Group; 2014;15: 7–18. doi: 10.1038/nrm3719 24326623
80. Zimmermann M, de Lange T. 53BP1: pro choice in DNA repair. Trends Cell Biol. 2014;24: 108–117. doi: 10.1016/j.tcb.2013.09.003 24094932
81. Bunting SF, Callén E, Wong N, Chen HT, Polato F, Gunn A, et al. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell. 2010;141: 243–254. doi: 10.1016/j.cell.2010.03.012 20362325
82. Difilippantonio S, Gapud E, Wong N, Huang C-Y, Mahowald G, Chen HT, et al. 53BP1 facilitates long-range DNA end-joining during V(D)J recombination. Nature. Nature Publishing Group; 2008;456: 529–533. doi: 10.1038/nature07476 18931658
83. Dimitrova N, Chen Y-CM, Spector DL, de Lange T. 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature. 2008;456: 524–528. doi: 10.1038/nature07433 18931659
84. Lou Z, Chen BP-C, Asaithamby A, Minter-Dykhouse K, Chen DJ, Chen J. MDC1 regulates DNA-PK autophosphorylation in response to DNA damage. Journal of Biological Chemistry. American Society for Biochemistry and Molecular Biology; 2004;279: 46359–46362. doi: 10.1074/jbc.C400375200 15377652
85. Stewart GS, Wang B, Bignell CR, Taylor AMR, Elledge SJ. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature. 2003;421: 961–966. doi: 10.1038/nature01446 12607005
86. Minter-Dykhouse K, Ward I, Huen MSY, Chen J, Lou Z. Distinct versus overlapping functions of MDC1 and 53BP1 in DNA damage response and tumorigenesis. J Cell Biol. 2008;181: 727–735. doi: 10.1083/jcb.200801083 18504301
87. Eliezer Y, Argaman L, Rhie A, Doherty AJ, Goldberg M. The direct interaction between 53BP1 and MDC1 is required for the recruitment of 53BP1 to sites of damage. Journal of Biological Chemistry. American Society for Biochemistry and Molecular Biology; 2009;284: 426–435. doi: 10.1074/jbc.M807375200 18986980
88. Hooper M, Hardy K, Handyside A, Hunter S, Monk M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature. 1987;326: 292–295. doi: 10.1038/326292a0 3821905
89. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. Nature Publishing Group; 2013;8: 2281–2308. doi: 10.1038/nprot.2013.143 24157548
90. Soriano P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet. 1999;21: 70–71. doi: 10.1038/5007 9916792
91. Dannenberg J-H, Schuijff L, Dekker M, van der Valk M, Riele Te H. Tissue-specific tumor suppressor activity of retinoblastoma gene homologs p107 and p130. Genes Dev. Cold Spring Harbor Lab; 2004;18: 2952–2962. doi: 10.1101/gad.322004 15574596
92. Li MZ, Elledge SJ. SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol. 2012;852: 51–59. doi: 10.1007/978-1-61779-564-0_5 22328425
93. Gibson DG, Young L, Chuang R-Y, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Meth. 2009;6: 343–345. doi: 10.1038/nmeth.1318 19363495
94. Fu J, Anastassiadis K, Stewart AF. A recombineering pipeline to make conditional targeting constructs. Meth Enzymol. 2010;477: 125–144. doi: 10.1016/S0076-6879(10)77008-7 20699140
95. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72: 8463–8471. 9765382
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2020 Číslo 1
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Souvislost haplotypu M2 genu pro annexin A5 s opakovanými reprodukčními ztrátami
- Akutní intermitentní porfyrie
- Hodnota lidského choriového gonadotropinu v časném stadiu gravidity po IVF – asociace s rozvojem preeklampsie?
Nejčtenější v tomto čísle
- Dynamic and regulated TAF gene expression during mouse embryonic germ cell development
- Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing
- Ligand dependent gene regulation by transient ERα clustered enhancers
- Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality