High-throughput discovery of genetic determinants of circadian misalignment
Autoři:
Tao Zhang aff001; Pancheng Xie aff001; Yingying Dong aff001; Zhiwei Liu aff001; Fei Zhou aff001; Dejing Pan aff001; Zhengyun Huang aff001; Qiaocheng Zhai aff001; Yue Gu aff001; Qingyu Wu aff002; Nobuhiko Tanaka aff004; Yuichi Obata aff004; Allan Bradley aff005; Christopher J. Lelliott aff005; ; Lauryl M. J. Nutter aff006; Colin McKerlie aff006; Ann M. Flenniken aff006; Marie-France Champy aff007; Tania Sorg aff007; Yann Herault aff007; Martin Hrabe De Angelis aff008; Valerie Gailus Durner aff008; Ann-Marie Mallon aff010; Steve D. M. Brown aff010; Terry Meehan aff011; Helen E. Parkinson aff011; Damian Smedley aff012; K. C. Kent Lloyd aff013; Jun Yan aff014; Xiang Gao aff014; Je Kyung Seong aff015; Chi-Kuang Leo Wang aff016; Radislav Sedlacek aff009; Yi Liu aff017; Jan Rozman aff008; Ling Yang aff001; Ying Xu aff001
Působiště autorů:
Cambridge-Suda Genomic Resource Center, Jiangsu Key Laboratory of Neuropsychiatric Diseases, Medical college of Soochow University, Suzhou, Jiangsu, China
aff001; Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
aff002; State Key Laboratory of Radiation Medicine and Prevention, Medical college of Soochow University, Suzhou, China
aff003; RIKEN BioResource Center, Tsukuba, Japan
aff004; The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
aff005; The Centre for Phenogenomics, Toronto, Canada
aff006; CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), Illkirch, France
aff007; German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
aff008; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
aff009; Medical Research Council Harwell Institute (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, United Kingdom
aff010; European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
aff011; School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
aff012; School of Medicine and Mouse Biology Program, University of California, Davis, California, United States of America
aff013; SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
aff014; College of Veterinary Medicine, Seoul National University, and Korea Mouse Phenotyping Center, Seoul, Republic of Korea
aff015; National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Taipei, Taiwan
aff016; Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
aff017; German Center for Diabetes Research (DZD), Neuherberg, Germany
aff018
Vyšlo v časopise:
High-throughput discovery of genetic determinants of circadian misalignment. PLoS Genet 16(1): e32767. doi:10.1371/journal.pgen.1008577
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008577
Souhrn
Circadian systems provide a fitness advantage to organisms by allowing them to adapt to daily changes of environmental cues, such as light/dark cycles. The molecular mechanism underlying the circadian clock has been well characterized. However, how internal circadian clocks are entrained with regular daily light/dark cycles remains unclear. By collecting and analyzing indirect calorimetry (IC) data from more than 2000 wild-type mice available from the International Mouse Phenotyping Consortium (IMPC), we show that the onset time and peak phase of activity and food intake rhythms are reliable parameters for screening defects of circadian misalignment. We developed a machine learning algorithm to quantify these two parameters in our misalignment screen (SyncScreener) with existing datasets and used it to screen 750 mutant mouse lines from five IMPC phenotyping centres. Mutants of five genes (Slc7a11, Rhbdl1, Spop, Ctc1 and Oxtr) were found to be associated with altered patterns of activity or food intake. By further studying the Slc7a11tm1a/tm1a mice, we confirmed its advanced activity phase phenotype in response to a simulated jetlag and skeleton photoperiod stimuli. Disruption of Slc7a11 affected the intercellular communication in the suprachiasmatic nucleus, suggesting a defect in synchronization of clock neurons. Our study has established a systematic phenotype analysis approach that can be used to uncover the mechanism of circadian entrainment in mice.
Klíčová slova:
Animal behavior – Circadian oscillators – Circadian rhythms – Chronobiology – Machine learning algorithms – Mice – Phenotypes – Random variables
Zdroje
1. Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18: 164–179. doi: 10.1038/nrg.2016.150 27990019
2. Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72: 551–577. doi: 10.1146/annurev-physiol-021909-135919 20148688
3. Roenneberg T, Merrow M (2016) The Circadian Clock and Human Health. Curr Biol 26: R432–443. doi: 10.1016/j.cub.2016.04.011 27218855
4. Morris CJ, Purvis TE, Hu K, Scheer FA (2016) Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci U S A 113: E1402–1411. doi: 10.1073/pnas.1516953113 26858430
5. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, et al. (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424: 76–81. doi: 10.1038/nature01761 12808468
6. Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, et al. (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301: 525–527. doi: 10.1126/science.1086179 12829787
7. Harmar AJ, Marston HM, Shen S, Spratt C, West KM, et al. (2002) The VPAC(2) receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 109: 497–508. doi: 10.1016/s0092-8674(02)00736-5 12086606
8. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED (2005) Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8: 476–483. doi: 10.1038/nn1419 15750589
9. Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, et al. (2013) Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342: 85–90. doi: 10.1126/science.1238599 24092737
10. Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, et al. (1999) Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans. Nat Med 5: 1062–1065. doi: 10.1038/12502 10470086
11. Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, et al. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291: 1040–1043. doi: 10.1126/science.1057499 11232563
12. Patke A, Murphy PJ, Onat OE, Krieger AC, Ozcelik T, et al. (2017) Mutation of the Human Circadian Clock Gene CRY1 in Familial Delayed Sleep Phase Disorder. Cell 169: 203–215 e213. doi: 10.1016/j.cell.2017.03.027 28388406
13. Hirano A, Shi G, Jones CR, Lipzen A, Pennacchio LA, et al. (2016) A Cryptochrome 2 mutation yields advanced sleep phase in humans. Elife 5.
14. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, et al. (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434: 640–644. doi: 10.1038/nature03453 15800623
15. Xu Y, Toh KL, Jones CR, Shin JY, Fu YH, et al. (2007) Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128: 59–70. doi: 10.1016/j.cell.2006.11.043 17218255
16. Liu Z, Huang M, Wu X, Shi G, Xing L, et al. (2014) PER1 phosphorylation specifies feeding rhythm in mice. Cell Rep 7: 1509–1520. doi: 10.1016/j.celrep.2014.04.032 24857656
17. Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, et al. (2019) Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell 177: 896–909 e820. doi: 10.1016/j.cell.2019.02.017 31030999
18. Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, et al. (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289: 2344–2347. doi: 10.1126/science.289.5488.2344 11009419
19. Saini C, Morf J, Stratmann M, Gos P, Schibler U (2012) Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev 26: 567–580. doi: 10.1101/gad.183251.111 22379191
20. Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330: 379–385. doi: 10.1126/science.1195262 20947768
21. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291: 490–493. doi: 10.1126/science.291.5503.490 11161204
22. Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90: 1063–1102. doi: 10.1152/physrev.00009.2009 20664079
23. de Angelis MH, Nicholson G, Selloum M, White JK, Morgan H, et al. (2015) Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics (vol 47, pg 969, 2015). Nature Genetics 47.
24. Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, et al. (2016) High-throughput discovery of novel developmental phenotypes. Nature 537: 508–514. doi: 10.1038/nature19356 27626380
25. Beckers J, Wurst W, de Angelis MH (2009) Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 10: 371–380. doi: 10.1038/nrg2578 19434078
26. Helfrich-Forster C (2009) Does the morning and evening oscillator model fit better for flies or mice? J Biol Rhythms 24: 259–270. doi: 10.1177/0748730409339614 19625728
27. Inagaki N, Honma S, Ono D, Tanahashi Y, Honma K (2007) Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc Natl Acad Sci U S A 104: 7664–7669. doi: 10.1073/pnas.0607713104 17463091
28. Myles PS, Cui J (2007) Using the Bland-Altman method to measure agreement with repeated measures. Br J Anaesth 99: 309–311. doi: 10.1093/bja/aem214 17702826
29. Qu Z, Zhang H, Huang M, Shi G, Liu Z, et al. (2016) Loss of ZBTB20 impairs circadian output and leads to unimodal behavioral rhythms. Elife 5.
30. Shi G, Xing L, Liu Z, Qu Z, Wu X, et al. (2013) Dual roles of FBXL3 in the mammalian circadian feedback loops are important for period determination and robustness of the clock. Proc Natl Acad Sci U S A 110: 4750–4755. doi: 10.1073/pnas.1302560110 23471982
31. Sawilowsky SS (2009) New effect size rules of thumb. Journal of Modern Applied Statistical Methods 8: 467–474.
32. de Angelis MH, Nicholson G, Selloum M, White J, Morgan H, et al. (2015) Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat Genet 47: 969–978. doi: 10.1038/ng.3360 26214591
33. Potter PK, Bowl MR, Jeyarajan P, Wisby L, Blease A, et al. (2016) Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nat Commun 7: 12444. doi: 10.1038/ncomms12444 27534441
34. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, et al. (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474: 337–342. doi: 10.1038/nature10163 21677750
35. Herzog ED, Hermanstyne T, Smyllie NJ, Hastings MH (2017) Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-Autonomous and Circuit-Level Mechanisms. Cold Spring Harb Perspect Biol 9.
36. Bae K, Jin X, Maywood ES, Hastings MH, Reppert SM, et al. (2001) Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30: 525–536. doi: 10.1016/s0896-6273(01)00302-6 11395012
37. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, et al. (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103: 1009–1017. doi: 10.1016/s0092-8674(00)00205-1 11163178
38. Karatsoreos IN, Romeo RD, Mcewen BS, Rae S (2010) Diurnal regulation of the gastrin-releasing peptide receptor in the mouse circadian clock. European Journal of Neuroscience 23: 1047–1053.
39. Aida R, Moriya T, Araki M, Akiyama M, Wada K, et al. (2002) Gastrin-Releasing Peptide Mediates Photic Entrainable Signals to Dorsal Subsets of Suprachiasmatic Nucleus via Induction ofPeriod Gene in Mice. Molecular pharmacology 61: 26–34. doi: 10.1124/mol.61.1.26 11752203
40. Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR, et al. (2018) Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron 99: 555–563 e555. doi: 10.1016/j.neuron.2018.06.029 30017392
41. Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, et al. (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417: 405–410. doi: 10.1038/417405a 12024206
42. Zhou QY, Cheng MY (2005) Prokineticin 2 and circadian clock output. FEBS J 272: 5703–5709. doi: 10.1111/j.1742-4658.2005.04984.x 16279936
43. Hatori M, Gill S, Mure LS, Goulding M, O'Leary DD, et al. (2014) Lhx1 maintains synchrony among circadian oscillator neurons of the SCN. Elife 3: e03357. doi: 10.7554/eLife.03357 25035422
44. Herzog ED (2007) Neurons and networks in daily rhythms. Nat Rev Neurosci 8: 790–802. doi: 10.1038/nrn2215 17882255
45. McCarthy MJ, Nievergelt CM, Kelsoe JR, Welsh DK (2012) A survey of genomic studies supports association of circadian clock genes with bipolar disorder spectrum illnesses and lithium response. PLoS One 7: e32091. doi: 10.1371/journal.pone.0032091 22384149
46. Kurien P, Hsu PK, Leon J, Wu D, McMahon T, et al. (2019) TIMELESS mutation alters phase responsiveness and causes advanced sleep phase. Proc Natl Acad Sci U S A 116: 12045–12053. doi: 10.1073/pnas.1819110116 31138685
47. Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, et al. (2014) Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. 3: 320–324.
48. Wang X, Tang J, Xing L, Shi G, Ruan H, et al. (2010) Interaction of MAGED1 with nuclear receptors affects circadian clock function. EMBO J 29: 1389–1400. doi: 10.1038/emboj.2010.34 20300063
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2020 Číslo 1
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Souvislost haplotypu M2 genu pro annexin A5 s opakovanými reprodukčními ztrátami
- Akutní intermitentní porfyrie
- Hodnota lidského choriového gonadotropinu v časném stadiu gravidity po IVF – asociace s rozvojem preeklampsie?
Nejčtenější v tomto čísle
- Dynamic and regulated TAF gene expression during mouse embryonic germ cell development
- Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing
- Ligand dependent gene regulation by transient ERα clustered enhancers
- Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality