Loss of androgen signaling in mesenchymal sonic hedgehog responsive cells diminishes prostate development, growth, and regeneration
Autoři:
Vien Le aff001; Yongfeng He aff001; Joseph Aldahl aff001; Erika Hooker aff001; Eun-Jeong Yu aff001; Adam Olson aff001; Won Kyung Kim aff001; Dong-Hoon Lee aff001; Monica Wong aff001; Ruoyu Sheng aff001; Jiaqi Mi aff001; Joseph Geradts aff002; Gerald R. Cunha aff003; Zijie Sun aff001
Působiště autorů:
Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California, United States of America
aff001; Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, California, United States of America
aff002; Department of Urology, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
aff003
Vyšlo v časopise:
Loss of androgen signaling in mesenchymal sonic hedgehog responsive cells diminishes prostate development, growth, and regeneration. PLoS Genet 16(1): e32767. doi:10.1371/journal.pgen.1008588
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008588
Souhrn
Prostate embryonic development, pubertal and adult growth, maintenance, and regeneration are regulated through androgen signaling-mediated mesenchymal-epithelial interactions. Specifically, the essential role of mesenchymal androgen signaling in the development of prostate epithelium has been observed for over 30 years. However, the identity of the mesenchymal cells responsible for this paracrine regulation and related mechanisms are still unknown. Here, we provide the first demonstration of an indispensable role of the androgen receptor (AR) in sonic hedgehog (SHH) responsive Gli1-expressing cells, in regulating prostate development, growth, and regeneration. Selective deletion of AR expression in Gli1-expressing cells during embryogenesis disrupts prostatic budding and impairs prostate development and formation. Tissue recombination assays showed that urogenital mesenchyme (UGM) containing AR-deficient mesenchymal Gli1-expressing cells combined with wildtype urogenital epithelium (UGE) failed to develop normal prostate tissue in the presence of androgens, revealing the decisive role of AR in mesenchymal SHH responsive cells in prostate development. Prepubescent deletion of AR expression in Gli1-expressing cells resulted in severe impairment of androgen-induced prostate growth and regeneration. RNA-sequencing analysis showed significant alterations in signaling pathways related to prostate development, stem cells, and organ morphogenesis in AR-deficient Gli1-expressing cells. Among these altered pathways, the transforming growth factor β1 (TGFβ1) pathway was up-regulated in AR-deficient Gli1-expressing cells. We further demonstrated the activation of TGFβ1 signaling in AR-deleted prostatic Gli1-expressing cells, which inhibits prostate epithelium growth through paracrine regulation. These data demonstrate a novel role of the AR in the Gli1-expressing cellular niche for regulating prostatic cell fate, morphogenesis, and renewal, and elucidate the mechanism by which mesenchymal androgen-signaling through SHH-responsive cells elicits the growth and regeneration of prostate epithelium.
Klíčová slova:
Androgens – Developmental signaling – Epithelium – Morphogenesis – Mouse models – Paracrine signaling – Prostate gland – TGF-beta signaling cascade
Zdroje
1. Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, et al. (1987) The endocrinology and developmental biology of the prostate. Endocr Rev 8: 338–362. doi: 10.1210/edrv-8-3-338 3308446
2. Cooke PS, Young P, Cunha GR (1991) Androgen receptor expression in developing male reproductive organs. Endocrinology 128: 2867–2873. doi: 10.1210/endo-128-6-2867 2036966
3. Cunha GR, Chung LW (1981) Stromal-epithelial interactions—I. Induction of prostatic phenotype in urothelium of testicular feminized (Tfm/y) mice. J Steroid Biochem 14: 1317–1324. doi: 10.1016/0022-4731(81)90338-1 6460136
4. Cunha GR (1984) Androgenic effects upon prostatic epithelium are mediated via trophic influences from stroma. Prog Clin Biol Res 145: 81–102. 6371832
5. Cunha GR, Lung B (1978) The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen-insensitive (Tfm) mice. J Exp Zool 205: 181–193. doi: 10.1002/jez.1402050203 681909
6. Brennen WN, Isaacs JT (2018) Mesenchymal stem cells and the embryonic reawakening theory of BPH. Nat Rev Urol 15: 703–715. doi: 10.1038/s41585-018-0087-9 30214054
7. Chang C, Lee SO, Wang RS, Yeh S, Chang TM (2013) Androgen receptor (AR) physiological roles in male and female reproductive systems: lessons learned from AR-knockout mice lacking AR in selective cells. Biol Reprod 89: 21. doi: 10.1095/biolreprod.113.109132 23782840
8. Lai KP, Yamashita S, Vitkus S, Shyr CR, Yeh S, et al. (2012) Suppressed prostate epithelial development with impaired branching morphogenesis in mice lacking stromal fibromuscular androgen receptor. Mol Endocrinol 26: 52–66. doi: 10.1210/me.2011-1189 22135068
9. Yu S, Zhang C, Lin CC, Niu Y, Lai KP, et al. (2011) Altered prostate epithelial development and IGF-1 signal in mice lacking the androgen receptor in stromal smooth muscle cells. Prostate 71: 517–524. doi: 10.1002/pros.21264 20945497
10. Bushman W (2016) Hedgehog Signaling in Prostate Development, Regeneration and Cancer. J Dev Biol 4.
11. Peng YC, Joyner AL (2015) Hedgehog signaling in prostate epithelial-mesenchymal growth regulation. Dev Biol 400: 94–104. doi: 10.1016/j.ydbio.2015.01.019 25641695
12. Doles J, Cook C, Shi X, Valosky J, Lipinski R, et al. (2006) Functional compensation in Hedgehog signaling during mouse prostate development. Dev Biol 295: 13–25. doi: 10.1016/j.ydbio.2005.12.002 16707121
13. Peng YC, Levine CM, Zahid S, Wilson EL, Joyner AL (2013) Sonic hedgehog signals to multiple prostate stromal stem cells that replenish distinct stromal subtypes during regeneration. Proc Natl Acad Sci U S A 110: 20611–20616. doi: 10.1073/pnas.1315729110 24218555
14. Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437: 894–897. doi: 10.1038/nature03994 16208373
15. Kugler MC, Joyner AL, Loomis CA, Munger JS (2015) Sonic hedgehog signaling in the lung. From development to disease. Am J Respir Cell Mol Biol 52: 1–13. doi: 10.1165/rcmb.2014-0132TR 25068457
16. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441: 1075–1079. doi: 10.1038/nature04957 16810242
17. Roberts KJ, Kershner AM, Beachy PA (2017) The Stromal Niche for Epithelial Stem Cells: A Template for Regeneration and a Brake on Malignancy. Cancer Cell 32: 404–410. doi: 10.1016/j.ccell.2017.08.007 29017054
18. Chung LW, Cunha GR (1983) Stromal-epithelial interactions: II. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate 4: 503–511. doi: 10.1002/pros.2990040509 6889194
19. Berman DM, Desai N, Wang X, Karhadkar SS, Reynon M, et al. (2004) Roles for Hedgehog signaling in androgen production and prostate ductal morphogenesis. Dev Biol 267: 387–398. doi: 10.1016/j.ydbio.2003.11.018 15013801
20. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550. doi: 10.1073/pnas.0506580102 16199517
21. Danielpour D (2005) Functions and regulation of transforming growth factor-beta (TGF-beta) in the prostate. Eur J Cancer 41: 846–857. doi: 10.1016/j.ejca.2004.12.027 15808954
22. Kyprianou N, Isaacs JT (1988) Identification of a cellular receptor for transforming growth factor-beta in rat ventral prostate and its negative regulation by androgens. Endocrinology 123: 2124–2131. doi: 10.1210/endo-123-4-2124 2901342
23. Wu X, Wu J, Huang J, Powell WC, Zhang J, et al. (2001) Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mech Dev 101: 61–69. doi: 10.1016/s0925-4773(00)00551-7 11231059
24. Shannon JM, Cunha GR (1983) Autoradiographic localization of androgen binding in the developing mouse prostate. Prostate 4: 367–373. doi: 10.1002/pros.2990040406 6866851
25. Prins GS, Putz O (2008) Molecular signaling pathways that regulate prostate gland development. Differentiation 76: 641–659. doi: 10.1111/j.1432-0436.2008.00277.x 18462433
26. Shaw A, Bushman W (2007) Hedgehog signaling in the prostate. J Urol 177: 832–838. doi: 10.1016/j.juro.2006.10.061 17296352
27. Kyprianou N, Isaacs JT (1989) Expression of transforming growth factor-beta in the rat ventral prostate during castration-induced programmed cell death. Mol Endocrinol 3: 1515–1522. doi: 10.1210/mend-3-10-1515 2608047
28. Brodin G, ten Dijke P, Funa K, Heldin CH, Landstrom M (1999) Increased smad expression and activation are associated with apoptosis in normal and malignant prostate after castration. Cancer Res 59: 2731–2738. 10363999
29. Yan G, Fukabori Y, Nikolaropoulos S, Wang F, McKeehan WL (1992) Heparin-binding keratinocyte growth factor is a candidate stromal-to-epithelial-cell andromedin. Mol Endocrinol 6: 2123–2128. doi: 10.1210/mend.6.12.1491693 1491693
30. De Gendt K, Swinnen JV, Saunders PT, Schoonjans L, Dewerchin M, et al. (2004) A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci U S A 101: 1327–1332. doi: 10.1073/pnas.0308114100 14745012
31. He Y, Hooker E, Yu EJ, Wu H, Cunha GR, et al. (2018) An Indispensable Role of Androgen Receptor in Wnt Responsive Cells During Prostate Development, Maturation, and Regeneration. Stem Cells doi: 10.1002/stem.2806 29451339
32. Lee SH, Johnson DT, Luong R, Yu EJ, Cunha GR, et al. (2015) Wnt/beta-Catenin-Responsive Cells in Prostatic Development and Regeneration. Stem Cells 33: 3356–3367. doi: 10.1002/stem.2096 26220362
33. Sugimura Y, Cunha GR, Bigsby RM (1986) Androgenic induction of DNA synthesis in prostatic glands induced in the urothelium of testicular feminized (Tfm/Y) mice. Prostate 9: 217–225. doi: 10.1002/pros.2990090302 2946028
34. Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, et al. (2014) Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159: 163–175. doi: 10.1016/j.cell.2014.08.017 25201529
35. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, et al. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14: R36. doi: 10.1186/gb-2013-14-4-r36 23618408
36. Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166–169. doi: 10.1093/bioinformatics/btu638 25260700
37. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140. doi: 10.1093/bioinformatics/btp616 19910308
38. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40: 4288–4297. doi: 10.1093/nar/gks042 22287627
39. Babicki S, Arndt D, Marcu A, Liang Y, Grant JR, et al. (2016) Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44: W147–153. doi: 10.1093/nar/gkw419 27190236
40. Huang XF, Luu-The V (2000) Molecular characterization of a first human 3(alpha—>beta)-hydroxysteroid epimerase. J Biol Chem 275: 29452–29457. doi: 10.1074/jbc.M000562200 10896656
41. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57. doi: 10.1038/nprot.2008.211 19131956
42. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45: D353–D361. doi: 10.1093/nar/gkw1092 27899662
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2020 Číslo 1
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Akutní intermitentní porfyrie
- Vztah užívání alkoholu a mužské fertility
- Šanci na úspěšný průběh těhotenství snižují nevhodné hladiny progesteronu vznikající při umělém oplodnění
Nejčtenější v tomto čísle
- Dynamic and regulated TAF gene expression during mouse embryonic germ cell development
- Autophagy gene haploinsufficiency drives chromosome instability, increases migration, and promotes early ovarian tumors
- Genomic profiling of human vascular cells identifies TWIST1 as a causal gene for common vascular diseases
- Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing