The Arabidopsis receptor kinase STRUBBELIG regulates the response to cellulose deficiency
Autoři:
Ajeet Chaudhary aff001; Xia Chen aff001; Jin Gao aff001; Barbara Leśniewska aff001; Richard Hammerl aff002; Corinna Dawid aff002; Kay Schneitz aff001
Působiště autorů:
Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
aff001; Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
aff002
Vyšlo v časopise:
The Arabidopsis receptor kinase STRUBBELIG regulates the response to cellulose deficiency. PLoS Genet 16(1): e32767. doi:10.1371/journal.pgen.1008433
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008433
Souhrn
Plant cells are encased in a semi-rigid cell wall of complex build. As a consequence, cell wall remodeling is essential for the control of growth and development as well as the regulation of abiotic and biotic stress responses. Plant cells actively sense physico-chemical changes in the cell wall and initiate corresponding cellular responses. However, the underlying cell wall monitoring mechanisms remain poorly understood. In Arabidopsis the atypical receptor kinase STRUBBELIG (SUB) mediates tissue morphogenesis. Here, we show that SUB-mediated signal transduction also regulates the cellular response to a reduction in the biosynthesis of cellulose, a central carbohydrate component of the cell wall. SUB signaling affects early increase of intracellular reactive oxygen species, stress gene induction as well as ectopic lignin and callose accumulation upon exogenous application of the cellulose biosynthesis inhibitor isoxaben. Moreover, our data reveal that SUB signaling is required for maintaining cell size and shape of root epidermal cells and the recovery of root growth after transient exposure to isoxaben. SUB is also required for root growth arrest in mutants with defective cellulose biosynthesis. Genetic data further indicate that SUB controls the isoxaben-induced cell wall stress response independently from other known receptor kinase genes mediating this response, such as THESEUS1 or MIK2. We propose that SUB functions in a least two distinct biological processes: the control of tissue morphogenesis and the response to cell wall damage. Taken together, our results reveal a novel signal transduction pathway that contributes to the molecular framework underlying cell wall integrity signaling.
Klíčová slova:
Cellulose – Hypocotyl – Lignin – Plant cell walls – Redox signaling – Root growth – Seedlings – Marker genes
Zdroje
1. Lampugnani ER, Khan GA, Somssich M, Persson S (2018) Building a plant cell wall at a glance. J Cell Sci 131:
2. Höfte H, Voxeur A (2017) Plant cell walls. Curr Biol 27: R865–R870. doi: 10.1016/j.cub.2017.05.025 28898654
3. Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67: 463–476. doi: 10.1093/jxb/erv511 26608646
4. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60: 379–406. doi: 10.1146/annurev.arplant.57.032905.105346 19400727
5. Franck CM, Westermann J, Boisson-Dernier A (2018) Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annu Rev Plant Biol 69: 301–328. doi: 10.1146/annurev-arplant-042817-040557 29539271
6. Herger A, Dünser K, Kleine-Vehn J, Ringli C (2019) Leucine-rich repeat extensin proteins and their role in cell wall sensing. Curr Biol 29: R851–R858. doi: 10.1016/j.cub.2019.07.039 31505187
7. Vaahtera L, Schulz J, Hamann T (2019) Cell wall integrity maintenance during plant development and interaction with the environment. Nat Plants 5: 924–932. doi: 10.1038/s41477-019-0502-0 31506641
8. Wolf S (2017) Plant cell wall signalling and receptor-like kinases. Biochem J 474: 471–492. doi: 10.1042/BCJ20160238 28159895
9. Voxeur A, Höfte H (2016) Cell wall integrity signaling in plants: “To grow or not to grow that’s the question”. Glycobiology 26: 950–960. doi: 10.1093/glycob/cww029 26945038
10. Wolf S, van der Does D, Ladwig F, Sticht C, Kolbeck A, Schurholz AK et al. (2014) A receptor-like protein mediates the response to pectin modification by activating brassinosteroid signaling. Proc Natl Acad Sci U S A 111: 15261–15266. doi: 10.1073/pnas.1322979111 25288746
11. Wolf S, Mravec J, Greiner S, Mouille G, Höfte H (2012) Plant cell wall homeostasis is mediated by brassinosteroid feedback signaling. Curr Biol 22: 1732–1737. doi: 10.1016/j.cub.2012.07.036 22885061
12. Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC et al. (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317: 656–660. doi: 10.1126/science.1143562 17673660
13. Dünser K, Gupta S, Herger A, Feraru MI, Ringli C, Kleine-Vehn J (2019) Extracellular matrix sensing by FERONIA and Leucine-Rich Repeat Extensins controls vacuolar expansion during cellular elongation in Arabidopsis thaliana. EMBO J 38:
14. Feng W, Kita D, Peaucelle A, Cartwright HN, Doan V, Duan Q et al. (2018) The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Curr Biol 28: 666–675.e5. doi: 10.1016/j.cub.2018.01.023 29456142
15. Boisson-Dernier A, Roy S, Kritas K, Grobei MA, Jaciubek M, Schroeder JI et al. (2009) Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136: 3279–3288. doi: 10.1242/dev.040071 19736323
16. Franck C, Westermann J, Bürssner S, Lentz R, Lituiev DS, Boisson-Dernier A (2018) The protein phosphatases ATUNIS1 and ATUNIS2 regulate cell wall integrity in tip-growing cells. Plant Cell 30: 1906–1923. doi: 10.1105/tpc.18.00284 29991535
17. Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Gagliardini V et al. (2017) RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358: 1600–1603. doi: 10.1126/science.aao5467 29242232
18. Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H et al. (2009) ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol 19: 1327–1331. doi: 10.1016/j.cub.2009.06.064 19646876
19. Bai L, Ma X, Zhang G, Song S, Zhou Y, Gao L et al. (2014) A receptor-like kinase mediates ammonium homeostasis and Is important for the polar growth of root hairs in Arabidopsis. Plant Cell 26: 1497–1511. doi: 10.1105/tpc.114.124586 24769480
20. Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343: 408–411. doi: 10.1126/science.1244454 24458638
21. Schoenaers S, Balcerowicz D, Breen G, Hill K, Zdanio M, Mouille G et al. (2018) The auxin-regulated CrRLK1L kinase ERULUS controls cell wall composition during root hair tip growth. Curr Biol 28: 722–732.e6. doi: 10.1016/j.cub.2018.01.050 29478854
22. Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J et al. (2004) Toward a systems approach to understanding plant cell walls. Science 306: 2206–2211. doi: 10.1126/science.1102765 15618507
23. Caño-Delgado A, Penfield S, Smith C, Catley M, Bevan M (2003) Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J 34: 351–362. doi: 10.1046/j.1365-313x.2003.01729.x 12713541
24. Cano-Delgado AI, Metzlaff K, Bevan MW (2000) The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana. Development 127: 3395–3405. 10887094
25. Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14: 1557–1566. doi: 10.1105/tpc.002022 12119374
26. Ellis C, Turner JG (2001) The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13: 1025–1033. doi: 10.1105/tpc.13.5.1025 11340179
27. Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G et al. (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12: 2409–2424. doi: 10.1105/tpc.12.12.2409 11148287
28. Heim DR, Skomp JR, Tschabold EE, Larrinua IM (1990) Isoxaben inhibits the synthesis of acid insoluble cell wall materials in Arabidopsis thaliana. Plant Physiol 93: 695–700. doi: 10.1104/pp.93.2.695 16667525
29. Lefebvre A, Maizonnier D, Gaudry JC, Clair D, Scalla R (1987) Some effects of the herbicide EL-107 on cellular growth and metabolism. Weed Research 27: 125–134.
30. Desprez T, Vernhettes S, Fagard M, Refrégier G, Desnos T, Aletti E et al. (2002) Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol 128: 482–490. doi: 10.1104/pp.010822 11842152
31. Scheible WR, Eshed R, Richmond T, Delmer D, Somerville C (2001) Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants. Proc Natl Acad Sci U S A 98: 10079–10084. doi: 10.1073/pnas.191361598 11517344
32. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312: 1491–1495. doi: 10.1126/science.1126551 16627697
33. Heim DR, Skomp JR, Waldron C, Larrinua IM (1991) Differential response to isoxaben of cellulose biosynthesis by wild-type and resistant strains of Arabidopsis thaliana. Pesticide Biochemistry and Physiology 39: 93–99.
34. Engelsdorf T, Gigli-Bisceglia N, Veerabagu M, McKenna JF, Vaahtera L, Augstein F et al. (2018) The plant cell wall integrity maintenance and immune signaling systems cooperate to control stress responses in Arabidopsis thaliana. Sci Signal 11: eaao3070. doi: 10.1126/scisignal.aao3070 29945884
35. Hamann T (2015) The plant cell wall integrity maintenance mechanism—a case study of a cell wall plasma membrane signaling network. Phytochemistry 112: 100–109. doi: 10.1016/j.phytochem.2014.09.019 25446233
36. Wormit A, Butt SM, Chairam I, McKenna JF, Nunes-Nesi A, Kjaer L et al. (2012) Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition. Plant Physiol 159: 105–117. doi: 10.1104/pp.112.195198 22422940
37. Hamann T, Bennett M, Mansfield J, Somerville C (2009) Identification of cell-wall stress as a hexose-dependent and osmosensitive regulator of plant responses. Plant J 57: 1015–1026. doi: 10.1111/j.1365-313X.2008.03744.x 19036034
38. Hématy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, Balzergue S et al. (2007) A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 17: 922–931. doi: 10.1016/j.cub.2007.05.018 17540573
39. Van der Does D, Boutrot F, Engelsdorf T, Rhodes J, McKenna JF, Vernhettes S et al. (2017) The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses. PLoS Genet 13: e1006832. doi: 10.1371/journal.pgen.1006832 28604776
40. Julkowska M, Koevoets IT, Mol S, Hoefsloot HC, Feron R, Tester M et al. (2017) Genetic components of root architecture remodeling in response to salt stress. Plant Cell 29: 3198–3213. doi: 10.1105/tpc.16.00680 29114015
41. Wang T, Liang L, Xue Y, Jia PF, Chen W, Zhang MX et al. (2016) A receptor heteromer mediates the male perception of female attractants in plants. Nature 531: 241–244. doi: 10.1038/nature16975 26863186
42. Xu SL, Rahman A, Baskin TI, Kieber JJ (2008) Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20: 3065–3079. doi: 10.1105/tpc.108.063354 19017745
43. Gonneau M, Desprez T, Martin M, Doblas VG, Bacete L, Miart F et al. (2018) Receptor kinase THESEUS1 is a Rapid Alkalinization Factor 34 receptor in Arabidopsis. Curr Biol 28: 2452–2458.e4. doi: 10.1016/j.cub.2018.05.075 30057301
44. Chevalier D, Batoux M, Fulton L, Pfister K, Yadav RK, Schellenberg M et al. (2005) STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proc Natl Acad Sci U S A 102: 9074–9079. doi: 10.1073/pnas.0503526102 15951420
45. Kwak SH, Shen R, Schiefelbein J (2005) Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science 307: 1111–1113. doi: 10.1126/science.1105373 15618487
46. Lin L, Zhong SH, Cui XF, Li J, He ZH (2012) Characterization of temperature-sensitive mutants reveals a role for receptor-like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development. Plant J 72: 707–720. doi: 10.1111/j.1365-313X.2012.05109.x 22805005
47. Vaddepalli P, Fulton L, Batoux M, Yadav RK, Schneitz K (2011) Structure-function analysis of STRUBBELIG, an Arabidopsis atypical receptor-like kinase involved in tissue morphogenesis. PLoS One 6: e19730. doi: 10.1371/journal.pone.0019730 21603601
48. Sager RE, Lee JY (2018) Plasmodesmata at a glance. J Cell Sci 131: jcs209346. doi: 10.1242/jcs.209346 29880547
49. Otero S, Helariutta Y, Benitez-Alfonso Y (2016) Symplastic communication in organ formation and tissue patterning. Curr Opin Plant Biol 29: 21–28. doi: 10.1016/j.pbi.2015.10.007 26658335
50. Vaddepalli P, Herrmann A, Fulton L, Oelschner M, Hillmer S, Stratil TF et al. (2014) The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana. Development 141: 4139–4148. doi: 10.1242/dev.113878 25256344
51. Fulton L, Batoux M, Vaddepalli P, Yadav RK, Busch W, Andersen SU et al. (2009) DETORQUEO, QUIRKY, and ZERZAUST represent novel components involved in organ development mediated by the receptor-like kinase STRUBBELIG in Arabidopsis thaliana. PLoS Genet 5: e1000355. doi: 10.1371/journal.pgen.1000355 19180193
52. Vaddepalli P, Fulton L, Wieland J, Wassmer K, Schaeffer M, Ranf S et al. (2017) The cell wall-localized atypical β-1,3 glucanase ZERZAUST controls tissue morphogenesis in Arabidopsis thaliana. Development 144: 2259–2269. doi: 10.1242/dev.152231 28507000
53. Desprez T, Juraniec M, Crowell EF, Jouy H, Pochylova Z, Parcy F et al. (2007) Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proc Natl Acad Sci U S A 104: 15572–15577. doi: 10.1073/pnas.0706569104 17878303
54. Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P et al. (2007) Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc Natl Acad Sci U S A 104: 15566–15571. doi: 10.1073/pnas.0706592104 17878302
55. Henry E, Fung N, Liu J, Drakakaki G, Coaker G (2015) Beyond glycolysis: GAPDHs are multi-functional enzymes involved in regulation of ros, autophagy, and plant immune responses. PLoS Genet 11: e1005199. doi: 10.1371/journal.pgen.1005199 25918875
56. Juárez SP, Mangano S, Estevez JM (2015) Improved ROS measurement in root hair cells. Methods Mol Biol 1242: 67–71. doi: 10.1007/978-1-4939-1902-4_6 25408444
57. Schenk ST, Schikora A (2015) Staining of callose depositions in root and leaf tissues. Bio-protocol 5: e1429.
58. Heim DR, Roberts JL, Pike PD, Larrinua IM (1990) A second locus, Ixr B1 in Arabidopsis thaliana, that confers resistance to the herbicide isoxaben. Plant Physiol 92: 858–861. doi: 10.1104/pp.92.3.858 16667361
59. Trehin C, Schrempp S, Chauvet A, Berne-Dedieu A, Thierry AM, Faure JE et al. (2013) QUIRKY interacts with STRUBBELIG and PAL OF QUIRKY to regulate cell growth anisotropy during Arabidopsis gynoecium development. Development 140: 4807–4817. doi: 10.1242/dev.091868 24173806
60. Song JH, Kwak SH, Nam KH, Schiefelbein J, Lee MM (2019) QUIRKY regulates root epidermal cell patterning through stabilizing SCRAMBLED to control CAPRICE movement in Arabidopsis. Nat Commun 10: 1744. doi: 10.1038/s41467-019-09715-8 30988311
61. Sampathkumar A, Yan A, Krupinski P, Meyerowitz EM (2014) Physical forces regulate plant development and morphogenesis. Curr Biol 24: R475–83. doi: 10.1016/j.cub.2014.03.014 24845680
62. Kwak SH, Woo S, Lee MM, Schiefelbein J (2014) Distinct signaling mechanisms in multiple developmental pathways by the SCRAMBLED receptor of Arabidopsis. Plant Physiol 166: 976–987. doi: 10.1104/pp.114.247288 25136062
63. Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M et al. (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156: 1364–1374. doi: 10.1104/pp.111.175737 21546454
64. Kohorn BD, Kobayashi M, Johansen S, Riese J, Huang LF, Koch K et al. (2006) An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J 46: 307–316. doi: 10.1111/j.1365-313X.2006.02695.x 16623892
65. Engelsdorf T, Hamann T (2014) An update on receptor-like kinase involvement in the maintenance of plant cell wall integrity. Ann Bot 114: 1339–1347. doi: 10.1093/aob/mcu043 24723447
66. Haswell ES, Verslues PE (2015) The ongoing search for the molecular basis of plant osmosensing. J Gen Physiol 145: 389–394. doi: 10.1085/jgp.201411295 25870206
67. Nissen KS, Willats WGT, Malinovsky FG (2016) Understanding CrRLK1L function: cell walls and growth control. Trends Plant Sci 21: 516–527. doi: 10.1016/j.tplants.2015.12.004 26778775
68. He Y, Zhou J, Shan L, Meng X (2018) Plant cell surface receptor-mediated signaling—a common theme amid diversity. J Cell Sci 131: 1–11.
69. Ma X, Xu G, He P, Shan L (2016) SERKing coreceptors for receptors. Trends Plant Sci 21: 1017–1033. doi: 10.1016/j.tplants.2016.08.014 27660030
70. Schwessinger B, Roux M, Kadota Y, Ntoukakis V, Sklenar J, Jones A et al. (2011) Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7: e1002046. doi: 10.1371/journal.pgen.1002046 21593986
71. Perraki A, DeFalco TA, Derbyshire P, Avila J, Séré D, Sklenar J et al. (2018) Phosphocode-dependent functional dichotomy of a common co-receptor in plant signalling. Nature 561: 248–252. doi: 10.1038/s41586-018-0471-x 30177827
72. Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A et al. (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. Elife 3: e03766.
73. Stegmann M, Monaghan J, Smakowska-Luzan E, Rovenich H, Lehner A, Holton N et al. (2017) The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling. Science 355: 287–289. doi: 10.1126/science.aal2541 28104890
74. Merz D, Richter J, Gonneau M, Sanchez-Rodriguez C, Eder T, Sormani R et al. (2017) T-DNA alleles of the receptor kinase THESEUS1 with opposing effects on cell wall integrity signaling. J Exp Bot 68: 4583–4593. doi: 10.1093/jxb/erx263 28981771
75. Coleman AD, Raasch L, Maroschek J, Ranf S, Hückelhoven R (2019) The Arabidopsis leucine-rich repeat receptor kinase MIK2 is a crucial component of pattern-triggered immunity responses to Fusarium fungi. bioRxiv 720037.
76. Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC et al. (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16: 144. doi: 10.1186/s13059-015-0715-0 26193878
77. Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant 7: 923–926. doi: 10.1093/mp/ssu009 24482433
78. Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204: 383–396.
79. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735–743. doi: 10.1046/j.1365-313x.1998.00343.x 10069079
80. Kumar M, Turner S (2015) Protocol: a medium-throughput method for determination of cellulose content from single stem pieces of Arabidopsis thaliana. Plant Methods 11: 46. doi: 10.1186/s13007-015-0090-6 26464578
81. Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32: 420–424. doi: 10.1016/s0003-2697(69)80009-6 5361396
82. Box MS, Coustham V, Dean C, Mylne JS (2011) Protocol: A simple phenol-based method for 96-well extraction of high quality RNA from Arabidopsis. Plant Methods 7: 7. doi: 10.1186/1746-4811-7-7 21396125
83. Enugutti B, Kirchhelle C, Oelschner M, Torres Ruiz RA, Schliebner I, Leister D et al. (2012) Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN. Proc Natl Acad Sci U S A 109: 15060–15065. doi: 10.1073/pnas.1205089109 22927420
84. Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET et al. (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18: 529. doi: 10.1186/s12859-017-1934-z 29187165
Článek vyšel v časopise
PLOS Genetics
2020 Číslo 1
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Mohou být časté noční můry předzvěstí demence?
Nejčtenější v tomto čísle
- Dynamic and regulated TAF gene expression during mouse embryonic germ cell development
- Genome assembly and characterization of a complex zfBED-NLR gene-containing disease resistance locus in Carolina Gold Select rice with Nanopore sequencing
- Ligand dependent gene regulation by transient ERα clustered enhancers
- Roles of Candida albicans Mig1 and Mig2 in glucose repression, pathogenicity traits, and SNF1 essentiality