Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations
Autoři:
Madeline H. Kowalski aff001; Huijun Qian aff002; Ziyi Hou aff003; Jonathan D. Rosen aff001; Amanda L. Tapia aff001; Yue Shan aff001; Deepti Jain aff004; Maria Argos aff005; Donna K. Arnett aff006; Christy Avery aff007; Kathleen C. Barnes aff008; Lewis C. Becker aff009; Stephanie A. Bien aff010; Joshua C. Bis aff011; John Blangero aff012; Eric Boerwinkle aff013; Donald W. Bowden aff015; Steve Buyske aff016; Jianwen Cai aff017; Michael H. Cho aff018; Seung Hoan Choi aff020; Hélène Choquet aff021; L. Adrienne Cupples aff022; Mary Cushman aff024; Michelle Daya aff008; Paul S. de Vries aff014; Patrick T. Ellinor aff020; Nauder Faraday aff009; Myriam Fornage aff026; Stacey Gabriel aff027; Santhi K. Ganesh aff028; Misa Graff aff007; Namrata Gupta aff027; Jiang He aff030; Susan R. Heckbert aff031; Bertha Hidalgo aff033; Chani J. Hodonsky aff007; Marguerite R. Irvin aff033; Andrew D. Johnson aff023; Eric Jorgenson aff021; Robert Kaplan aff035; Sharon L. R. Kardia aff036; Tanika N. Kelly aff030; Charles Kooperberg aff010; Jessica A. Lasky-Su aff018; Ruth J. F. Loos aff037; Steven A. Lubitz aff020; Rasika A. Mathias aff009; Caitlin P. McHugh aff004; Courtney Montgomery aff039; Jee-Young Moon aff035; Alanna C. Morrison aff014; Nicholette D. Palmer aff015; Nathan Pankratz aff040; George J. Papanicolaou aff041; Juan M. Peralta aff012; Patricia A. Peyser aff036; Stephen S. Rich aff042; Jerome I. Rotter aff043; Edwin K. Silverman aff018; Jennifer A. Smith aff044; Nicholas L. Smith aff031; Kent D. Taylor aff043; Timothy A. Thornton aff004; Hemant K. Tiwari aff046; Russell P. Tracy aff047; Tao Wang aff048; Scott T. Weiss aff018; Lu-Chen Weng aff020; Kerri L. Wiggins aff011; James G. Wilson aff049; Lisa R. Yanek aff009; Sebastian Zöllner aff050; Kari E. North aff007; Paul L. Auer aff053; ; ; Laura M. Raffield aff054; Alexander P. Reiner aff031; Yun Li aff001
Působiště autorů:
Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
aff001; Department of Statistics and Operation Research, University of North Carolina, Chapel Hill, North Carolina, United States of America
aff002; Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America
aff003; Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
aff004; Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, United States of America
aff005; College of Public Health, University of Kentucky, Lexington, Kentucky, United States of America
aff006; Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
aff007; Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, United States of America
aff008; GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
aff009; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
aff010; Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, United States of America
aff011; Department of Human Genetics and South Texas Diabetes Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
aff012; Human Genome Sequencing Center, University of Texas Health Science Center at Houston; Baylor College of Medicine, Houston, Texas, United States of America
aff013; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
aff014; Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
aff015; Department of Statistics, Rutgers University, Piscataway, New Jersey, United States of America
aff016; Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
aff017; Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
aff018; Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
aff019; Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
aff020; Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
aff021; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
aff022; Framingham Heart Study, Framingham, Massachusetts, United States of America
aff023; Departments of Medicine & Pathology, Larner College of Medicine, University of Vermont, Colchester, Vermont, United States of America
aff024; Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
aff025; School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States of America
aff026; Genomics Platform, Broad Institute, Cambridge, Massachusetts, United States of America
aff027; Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
aff028; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
aff029; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Los Angeles, United States of America
aff030; Department of Epidemiology, University of Washington, Seattle, Washington, United states of America
aff031; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, Washington, United States of America
aff032; Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
aff033; Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, Massachusetts, United States of America
aff034; Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
aff035; Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
aff036; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
aff037; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
aff038; Department of Genes and Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
aff039; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, United States of America
aff040; National Heart, Lung, and Blood Institute, Division of Cardiovascular Sciences, PPSP/EB, NIH, Bethesda, Maryland, United States of America
aff041; Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
aff042; The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
aff043; Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, United States of America
aff044; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, Washington, United States of America
aff045; Department of Biostatistics, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
aff046; Departments of Pathology & Laboratory Medicine and Biochemistry, Larrner College of Medicine, University of Vermont, Colchester, Vermont, United States of America
aff047; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
aff048; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
aff049; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
aff050; Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, United States of America
aff051; Carolina Center of Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
aff052; Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
aff053; Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, United States of America
aff054; Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, United States of America
aff055
Vyšlo v časopise:
Use of >100,000 NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium whole genome sequences improves imputation quality and detection of rare variant associations in admixed African and Hispanic/Latino populations. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008500
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008500
Souhrn
Most genome-wide association and fine-mapping studies to date have been conducted in individuals of European descent, and genetic studies of populations of Hispanic/Latino and African ancestry are limited. In addition, these populations have more complex linkage disequilibrium structure. In order to better define the genetic architecture of these understudied populations, we leveraged >100,000 phased sequences available from deep-coverage whole genome sequencing through the multi-ethnic NHLBI Trans-Omics for Precision Medicine (TOPMed) program to impute genotypes into admixed African and Hispanic/Latino samples with genome-wide genotyping array data. We demonstrated that using TOPMed sequencing data as the imputation reference panel improves genotype imputation quality in these populations, which subsequently enhanced gene-mapping power for complex traits. For rare variants with minor allele frequency (MAF) < 0.5%, we observed a 2.3- to 6.1-fold increase in the number of well-imputed variants, with 11–34% improvement in average imputation quality, compared to the state-of-the-art 1000 Genomes Project Phase 3 and Haplotype Reference Consortium reference panels. Impressively, even for extremely rare variants with minor allele count <10 (including singletons) in the imputation target samples, average information content rescued was >86%. Subsequent association analyses of TOPMed reference panel-imputed genotype data with hematological traits (hemoglobin (HGB), hematocrit (HCT), and white blood cell count (WBC)) in ~21,600 African-ancestry and ~21,700 Hispanic/Latino individuals identified associations with two rare variants in the HBB gene (rs33930165 with higher WBC [p = 8.8x10-15] in African populations, rs11549407 with lower HGB [p = 1.5x10-12] and HCT [p = 8.8x10-10] in Hispanics/Latinos). By comparison, neither variant would have been genome-wide significant if either 1000 Genomes Project Phase 3 or Haplotype Reference Consortium reference panels had been used for imputation. Our findings highlight the utility of the TOPMed imputation reference panel for identification of novel rare variant associations not previously detected in similarly sized genome-wide studies of under-represented African and Hispanic/Latino populations.
Klíčová slova:
Alleles – Consortia – Genome-wide association studies – Genotyping – Haplotypes – Hematology – Hemoglobin – Variant genotypes
Zdroje
1. Auer PL, Johnsen JM, Johnson AD, Logsdon BA, Lange LA, Nalls MA, et al. Imputation of exome sequence variants into population- based samples and blood-cell-trait-associated loci in African Americans: NHLBI GO Exome Sequencing Project. Am J Hum Genet. 2012;91(5):794–808. Epub 2012/10/30. doi: 10.1016/j.ajhg.2012.08.031 23103231.
2. Duan Q, Liu EY, Auer PL, Zhang G, Lange EM, Jun G, et al. Imputation of coding variants in African Americans: better performance using data from the exome sequencing project. Bioinformatics. 2013;29(21):2744–9. Epub 2013/08/21. doi: 10.1093/bioinformatics/btt477 23956302.
3. Lu F-P, Lin K-P, Kuo H-K. Diabetes and the risk of multi-system aging phenotypes: a systematic review and meta-analysis. PloS one. 2009;4(1):e4144. doi: 10.1371/journal.pone.0004144 19127292
4. Liu EY, Buyske S, Aragaki AK, Peters U, Boerwinkle E, Carlson C, et al. Genotype Imputation of MetabochipSNPs Using a Study-Specific Reference Panel of ~4,000 Haplotypes in African Americans From the Women’s Health Initiative. Genet Epidemiol. 2012;36(2):107–17. doi: 10.1002/gepi.21603 22851474
5. Liu EY, Li M, Wang W, Li Y. MaCH-admix: genotype imputation for admixed populations. Genetic epidemiology. 2013;37(1):25–37. Epub 2012/10/18. doi: 10.1002/gepi.21690 23074066.
6. Vergara C, Parker MM, Franco L, Cho MH, Valencia-Duarte AV, Beaty TH, et al. Genotype imputation performance of three reference panels using African ancestry individuals. Hum Genet. 2018;137(4):281–92. Epub 2018/04/11. doi: 10.1007/s00439-018-1881-4 29637265.
7. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449:851–61. doi: 10.1038/nature06258 17943122
8. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48(10):1279–83. Epub 2016/08/23. doi: 10.1038/ng.3643 27548312.
9. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. Epub 2015/10/04. doi: 10.1038/nature15393 26432245.
10. Mathias RA, Taub MA, Gignoux CR, Fu W, Musharoff S, O’Connor TD, et al. A continuum of admixture in the Western Hemisphere revealed by the African Diaspora genome. Nature communications. 2016;7:12522. Epub 2016/10/12. doi: 10.1038/ncomms12522 27725671 other authors declare no competing financial interests.
11. Crosslin DR, McDavid A, Weston N, Nelson SC, Zheng X, Hart E, et al. Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE Network. Hum Genet. 2012;131(4):639–52. Epub 2011/11/01. doi: 10.1007/s00439-011-1103-9 22037903.
12. Whitfield JB, Martin NG, Rao DC. Genetic and environmental influences on the size and number of cells in the blood. Genetic epidemiology. 1985;2(2):133–44. doi: 10.1002/gepi.1370020204 4054596
13. Garner C, Tatu T, Reittie JE, Littlewood T, Darley J, Cervino S, et al. Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood. 2000;95(1):342–6. Epub 1999/12/23. 10607722.
14. Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease. Cell. 2016;167(5):1415–29 e19. Epub 2016/11/20. doi: 10.1016/j.cell.2016.10.042 27863252.
15. van der Harst P, Zhang W, Mateo Leach I, Rendon A, Verweij N, Sehmi J, et al. Seventy-five genetic loci influencing the human red blood cell. Nature. 2012;492(7429):369–75. Epub 2012/12/12. doi: 10.1038/nature11677 23222517.
16. Mousas A, Ntritsos G, Chen MH, Song C, Huffman JE, Tzoulaki I, et al. Rare coding variants pinpoint genes that control human hematological traits. PLoS Genet. 2017;13(8):e1006925. Epub 2017/08/09. doi: 10.1371/journal.pgen.1006925 28787443.
17. Chami N, Chen MH, Slater AJ, Eicher JD, Evangelou E, Tajuddin SM, et al. Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits. Am J Hum Genet. 2016. Epub 2016/06/28. doi: 10.1016/j.ajhg.2016.05.007 27346685.
18. Eicher JD, Chami N, Kacprowski T, Nomura A, Chen MH, Yanek LR, et al. Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals. Am J Hum Genet. 2016. Epub 2016/06/28. doi: 10.1016/j.ajhg.2016.05.005 27346686.
19. Tajuddin SM, Schick UM, Eicher JD, Chami N, Giri A, Brody JA, et al. Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases. Am J Hum Genet. 2016. Epub 2016/06/28. doi: 10.1016/j.ajhg.2016.05.003 27346689.
20. Hodonsky CJ, Jain D, Schick UM, Morrison JV, Brown L, McHugh CP, et al. Genome-wide association study of red blood cell traits in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos. PLoS genetics. 2017;13(4):e1006760. Epub 2017/04/30. doi: 10.1371/journal.pgen.1006760 28453575.
21. Group. CCHW. Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits. Nat Genet. 2016;48(8):867–76. Epub 2016/07/12. doi: 10.1038/ng.3607 27399967.
22. Lo KS, Wilson JG, Lange LA, Folsom AR, Galarneau G, Ganesh SK, et al. Genetic association analysis highlights new loci that modulate hematological trait variation in Caucasians and African Americans. Hum Genet. 2011;129(3):307–17. Epub 2010/12/15. doi: 10.1007/s00439-010-0925-1 21153663.
23. Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995;10(2):224–8. Epub 1995/06/01. doi: 10.1038/ng0695-224 7663520.
24. Chen Z, Tang H, Qayyum R, Schick UM, Nalls MA, Handsaker R, et al. Genome-wide association analysis of red blood cell traits in African Americans: the COGENT Network. Hum Mol Genet. 2013;22(12):2529–38. Epub 2013/03/01. doi: 10.1093/hmg/ddt087 23446634.
25. Li J, Glessner JT, Zhang H, Hou C, Wei Z, Bradfield JP, et al. GWAS of blood cell traits identifies novel associated loci and epistatic interactions in Caucasian and African-American children. Hum Mol Genet. 2013;22(7):1457–64. Epub 2012/12/25. doi: 10.1093/hmg/dds534 23263863.
26. van Rooij FJA, Qayyum R, Smith AV, Zhou Y, Trompet S, Tanaka T, et al. Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis. Am J Hum Genet. 2017;100(1):51–63. Epub 2016/12/27. doi: 10.1016/j.ajhg.2016.11.016 28017375.
27. Jain D, Hodonsky CJ, Schick UM, Morrison JV, Minnerath S, Brown L, et al. Genome-wide association of white blood cell counts in Hispanic/Latino Americans: the Hispanic Community Health Study/Study of Latinos. Hum Mol Genet. 2017;26(6):1193–204. Epub 2017/02/06. doi: 10.1093/hmg/ddx024 28158719.
28. Polfus LM, Khajuria RK, Schick UM, Pankratz N, Pazoki R, Brody JA, et al. Whole-Exome Sequencing Identifies Loci Associated with Blood Cell Traits and Reveals a Role for Alternative GFI1B Splice Variants in Human Hematopoiesis. Am J Hum Genet. 2016;99(2):481–8. Epub 2016/08/04. doi: 10.1016/j.ajhg.2016.06.016 27486782.
29. Keller MF, Reiner AP, Okada Y, van Rooij FJ, Johnson AD, Chen MH, et al. Trans-ethnic meta-analysis of white blood cell phenotypes. Hum Mol Genet. 2014;23(25):6944–60. Epub 2014/08/07. doi: 10.1093/hmg/ddu401 25096241.
30. Reiner AP, Lettre G, Nalls MA, Ganesh SK, Mathias R, Austin MA, et al. Genome-wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT). PLoS genetics. 2011;7(6):e1002108. Epub 2011/07/09. doi: 10.1371/journal.pgen.1002108 21738479.
31. Pulit SL, de With SA, de Bakker PI. Resetting the bar: Statistical significance in whole-genome sequencing-based association studies of global populations. Genetic epidemiology. 2017;41(2):145–51. Epub 2016/12/19. doi: 10.1002/gepi.22032 27990689.
32. Trecartin RF, Liebhaber SA, Chang JC, Lee KY, Kan YW, Furbetta M, et al. beta zero thalassemia in Sardinia is caused by a nonsense mutation. The Journal of clinical investigation. 1981;68(4):1012–7. Epub 1981/10/01. doi: 10.1172/JCI110323 6457059.
33. Rosatelli MC, Dozy A, Faa V, Meloni A, Sardu R, Saba L, et al. Molecular characterization of beta-thalassemia in the Sardinian population. Am J Hum Genet. 1992;50(2):422–6. Epub 1992/02/01. 1734721.
34. Perea FJ, Magana MT, Cobian JG, Sanchez-Lopez JY, Chavez ML, Zamudio G, et al. Molecular spectrum of beta-thalassemia in the Mexican population. Blood cells, molecules & diseases. 2004;33(2):150–2. Epub 2004/08/19. doi: 10.1016/j.bcmd.2004.06.001 15315794.
35. Silva AN, Cardoso GL, Cunha DA, Diniz IG, Santos SE, Andrade GB, et al. The Spectrum of beta-Thalassemia Mutations in a Population from the Brazilian Amazon. Hemoglobin. 2016;40(1):20–4. Epub 2015/09/16. doi: 10.3109/03630269.2015.1083443 26372288.
36. Key NS, Connes P, Derebail VK. Negative health implications of sickle cell trait in high income countries: from the football field to the laboratory. British journal of haematology. 2015;170(1):5–14. Epub 2015/03/11. doi: 10.1111/bjh.13363 25754217.
37. Graffeo L, Vitrano A, Scondotto S, Dardanoni G, Pollina Addario WS, Giambona A, et al. beta-Thalassemia heterozygote state detrimentally affects health expectation. European journal of internal medicine. 2018;54:76–80. Epub 2018/06/24. doi: 10.1016/j.ejim.2018.06.009 29934240.
38. Galanello R, Origa R. Beta-thalassemia. Orphanet journal of rare diseases. 2010;5:11-. doi: 10.1186/1750-1172-5-11 20492708.
39. Fairhurst RM, Casella JF. Images in clinical medicine. Homozygous hemoglobin C disease. Q1. 2004;350(26):e24. Epub 2004/06/25. doi: 10.1056/NEJMicm030486 15215497.
40. Sorlie PD, Aviles-Santa LM, Wassertheil-Smoller S, Kaplan RC, Daviglus ML, Giachello AL, et al. Design and implementation of the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol. 2010;20(8):629–41. Epub 2010/07/09. doi: 10.1016/j.annepidem.2010.03.015 20609343.
41. Daviglus ML, Talavera GA, Aviles-Santa ML, Allison M, Cai J, Criqui MH, et al. Prevalence of major cardiovascular risk factors and cardiovascular diseases among Hispanic/Latino individuals of diverse backgrounds in the United States. Jama. 2012;308(17):1775–84. Epub 2012/11/03. doi: 10.1001/jama.2012.14517 23117778.
42. Lavange LM, Kalsbeek WD, Sorlie PD, Aviles-Santa LM, Kaplan RC, Barnhart J, et al. Sample design and cohort selection in the Hispanic Community Health Study/Study of Latinos. Ann Epidemiol. 2010;20(8):642–9. Epub 2010/07/09. doi: 10.1016/j.annepidem.2010.05.006 20609344.
43. Conomos MP, Laurie CA, Stilp AM, Gogarten SM, McHugh CP, Nelson SC, et al. Genetic Diversity and Association Studies in US Hispanic/Latino Populations: Applications in the Hispanic Community Health Study/Study of Latinos. Am J Hum Genet. 2016;98(1):165–84. Epub 2016/01/11. doi: 10.1016/j.ajhg.2015.12.001 26748518.
44. Wojcik G, Graff M, Nishimura KK, Tao R, Haessler J, Gignoux CR, et al. The PAGE Study: How Genetic Diversity Improves Our Understanding of the Architecture of Complex Traits. bioRxiv. 2018:188094. doi: 10.1101/188094
45. The Women’s Health Initiative Study Group. Design of the Women’s Health Initiative clinical trial and observational study. Control Clin Trials. 1998;19(1):61–109. Epub 1998/03/11. doi: 10.1016/s0197-2456(97)00078-0 9492970.
46. UK Biobank. UK Biobank: rationale, design and development of a large-scale prospective resource. 2007. http://www.ukbiobank.ac.uk/resources/.
47. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–9. doi: 10.1038/s41586-018-0579-z 30305743
48. Kvale MN, Hesselson S, Hoffmann TJ, Cao Y, Chan D, Connell S, et al. Genotyping Informatics and Quality Control for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics. 2015;200(4):1051–60. Epub 2015/06/21. doi: 10.1534/genetics.115.178905 26092718.
49. Banda Y, Kvale MN, Hoffmann TJ, Hesselson SE, Ranatunga D, Tang H, et al. Characterizing Race/Ethnicity and Genetic Ancestry for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort. Genetics. 2015;200(4):1285–95. doi: 10.1534/genetics.115.178616 26092716
50. Taylor HA Jr., Wilson JG, Jones DW, Sarpong DF, Srinivasan A, Garrison RJ, et al. Toward resolution of cardiovascular health disparities in African Americans: design and methods of the Jackson Heart Study. Ethn Dis. 2005;15(4 Suppl 6):S6-4-17. Epub 2005/12/02. 16320381.
51. Wilson JG, Rotimi CN, Ekunwe L, Royal CD, Crump ME, Wyatt SB, et al. Study design for genetic analysis in the Jackson Heart Study. Ethn Dis. 2005;15(4 Suppl 6):S6-30-7. Epub 2005/12/02. 16317983.
52. Musunuru K, Lettre G, Young T, Farlow DN, Pirruccello JP, Ejebe KG, et al. Candidate gene association resource (CARe): design, methods, and proof of concept. Circulation Cardiovascular genetics. 2010;3(3):267–75. Epub 2010/04/20. doi: 10.1161/CIRCGENETICS.109.882696 20400780.
53. Lettre G, Palmer CD, Young T, Ejebe KG, Allayee H, Benjamin EJ, et al. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe Project. PLoS genetics. 2011;7(2):e1001300. Epub 2011/02/25. doi: 10.1371/journal.pgen.1001300 21347282.
54. Friedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR Jr., et al. CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol. 1988;41(11):1105–16. Epub 1988/01/01. doi: 10.1016/0895-4356(88)90080-7 3204420.
55. Cutter GR, Burke GL, Dyer AR, Friedman GD, Hilner JE, Hughes GH, et al. Cardiovascular risk factors in young adults. The CARDIA baseline monograph. Control Clin Trials. 1991;12(1 Suppl):1S–77S. Epub 1991/02/11. doi: 10.1016/0197-2456(91)90002-4 1851696.
56. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. The ARIC investigators. Am J Epidemiol. 1989;129(4):687–702. Epub 1989/04/01. 2646917.
57. Loh PR, Danecek P, Palamara PF, Fuchsberger C, AR Y, KF H, et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016;48(11):1443–8. Epub 2016/10/28. doi: 10.1038/ng.3679 27694958.
58. Das S, Forer L, Schonherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48(10):1284–7. Epub 2016/08/30. doi: 10.1038/ng.3656 27571263.
59. Duan Q, Liu EY, Croteau-Chonka DC, Mohlke KL, Li Y. A comprehensive SNP and indel imputability database. Bioinformatics. 2013;29(4):528–31. Epub 2013/01/08. doi: 10.1093/bioinformatics/bts724 23292738.
60. Magi R, Lindgren CM, Morris AP. Meta-analysis of sex-specific genome-wide association studies. Genet Epidemiol. 2010;34(8):846–53. Epub 2010/11/26. doi: 10.1002/gepi.20540 21104887.
61. Maples Brian K, Gravel S, Kenny Eimear E, Bustamante Carlos D. RFMix: A Discriminative Modeling Approach for Rapid and Robust Local-Ancestry Inference. The American Journal of Human Genetics. 2013;93(2):278–88. http://dx.doi.org/10.1016/j.ajhg.2013.06.020 23910464
62. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science. 2008;319(5866):1100–4. Epub 2008/02/23. doi: 10.1126/science.1153717 18292342.
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 12
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Akutní intermitentní porfyrie
- Vztah užívání alkoholu a mužské fertility
- Šanci na úspěšný průběh těhotenství snižují nevhodné hladiny progesteronu vznikající při umělém oplodnění
Nejčtenější v tomto čísle
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Architecture of the Escherichia coli nucleoid
- Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude
- Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes