Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives
Autoři:
Madison Caballero aff001; Daniel N. Seidman aff002; Ying Qiao aff002; Jens Sannerud aff002; Thomas D. Dyer aff003; Donna M. Lehman aff004; Joanne E. Curran aff003; Ravindranath Duggirala aff003; John Blangero aff003; Shai Carmi aff005; Amy L. Williams aff002
Působiště autorů:
Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
aff001; Department of Computational Biology, Cornell University, Ithaca, New York, United States of America
aff002; South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, United States of America
aff003; Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
aff004; Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
aff005
Vyšlo v časopise:
Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1007979
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1007979
Souhrn
Simulations of close relatives and identical by descent (IBD) segments are common in genetic studies, yet most past efforts have utilized sex averaged genetic maps and ignored crossover interference, thus omitting features known to affect the breakpoints of IBD segments. We developed Ped-sim, a method for simulating relatives that can utilize either sex-specific or sex averaged genetic maps and also either a model of crossover interference or the traditional Poisson model for inter-crossover distances. To characterize the impact of previously ignored mechanisms, we simulated data for all four combinations of these factors. We found that modeling crossover interference decreases the standard deviation of pairwise IBD proportions by 10.4% on average in full siblings through second cousins. By contrast, sex-specific maps increase this standard deviation by 4.2% on average, and also impact the number of segments relatives share. Most notably, using sex-specific maps, the number of segments half-siblings share is bimodal; and when combined with interference modeling, the probability that sixth cousins have non-zero IBD sharing ranges from 9.0 to 13.1%, depending on the sexes of the individuals through which they are related. We present new analytical results for the distributions of IBD segments under these models and show they match results from simulations. Finally, we compared IBD sharing rates between simulated and real relatives and find that the combination of sex-specific maps and interference modeling most accurately captures IBD rates in real data. Ped-sim is open source and available from https://github.com/williamslab/ped-sim.
Klíčová slova:
Gene mapping – Genetic interference – Haplotypes – Meiosis – Physical mapping – Probability density – Simulation and modeling – Crossover interference
Zdroje
1. Weir BS, Anderson AD, Hepler AB. Genetic relatedness analysis: modern data and new challenges. Nature Reviews Genetics. 2006;7(10):771–780. doi: 10.1038/nrg1960 16983373
2. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203–209. doi: 10.1038/s41586-018-0579-z 30305743
3. Staples J, Maxwell EK, Gosalia N, Gonzaga-Jauregui C, Snyder C, Hawes A, et al. Profiling and Leveraging Relatedness in a Precision Medicine Cohort of 92,455 Exomes. The American Journal of Human Genetics. 2018;102(5):874–889. doi: 10.1016/j.ajhg.2018.03.012 29727688
4. Staples J, Witherspoon DJ, Jorde LB, Nickerson DA, Below JE, Huff CD, et al. PADRE: Pedigree-Aware Distant-Relationship Estimation. The American Journal of Human Genetics. 2016;99(1):154–162. doi: 10.1016/j.ajhg.2016.05.020 27374771
5. Ko A, Nielsen R. Composite likelihood method for inferring local pedigrees. PLOS Genetics. 2017;13(8):e1006963. doi: 10.1371/journal.pgen.1006963 28827797
6. Ramstetter MD, Shenoy SA, Dyer TD, Lehman DM, Curran JE, Duggirala R, et al. Inferring Identical-by-Descent Sharing of Sample Ancestors Promotes High-Resolution Relative Detection. The American Journal of Human Genetics. 2018;103(1):30–44. doi: 10.1016/j.ajhg.2018.05.008 29937093
7. Staples J, Qiao D, Cho MH, Silverman EK, Nickerson DA, Below JE. PRIMUS: Rapid Reconstruction of Pedigrees from Genome-wide Estimates of Identity by Descent. The American Journal of Human Genetics. 2014;95(5):553–564. doi: 10.1016/j.ajhg.2014.10.005 25439724
8. Epstein MP, Duren WL, Boehnke M. Improved Inference of Relationship for Pairs of Individuals. The American Journal of Human Genetics. 2000;67(5):1219–1231. doi: 10.1016/S0002-9297(07)62952-8 11032786
9. Hill W, Weir B. Variation in actual relationship as a consequence of Mendelian sampling and linkage. Genetics Research. 2011;93(01):47–64. doi: 10.1017/S0016672310000480 21226974
10. Hill WG, White IMS. Identification of Pedigree Relationship from Genome Sharing. G3: Genes, Genomes, Genetics. 2013;3(9):1553–1571. doi: 10.1534/g3.113.007500
11. Henn BM, Hon L, Macpherson JM, Eriksson N, Saxonov S, Pe’er I, et al. Cryptic Distant Relatives Are Common in Both Isolated and Cosmopolitan Genetic Samples. PLOS ONE. 2012;7(4):e34267. doi: 10.1371/journal.pone.0034267 22509285
12. Ball CA, Barber MJ, Byrnes J, Carbonetto P, Chahine KG, Curtis RE, et al. AncestryDNA Matching White Paper. AncestryDNA; 2016.
13. Broman KW, Weber JL. Characterization of human crossover interference. The American Journal of Human Genetics. 2000;66(6):1911–1926. doi: 10.1086/302923 10801387
14. Housworth E, Stahl F. Crossover interference in humans. The American Journal of Human Genetics. 2003;73(1):188–197. doi: 10.1086/376610 12772089
15. Campbell CL, Furlotte NA, Eriksson N, Hinds D, Auton A. Escape from crossover interference increases with maternal age. Nature Communications. 2015;6:6260. doi: 10.1038/ncomms7260 25695863
16. Bhérer C, Campbell CL, Auton A. Refined genetic maps reveal sexual dimorphism in human meiotic recombination at multiple scales. Nature Communications. 2017;8. doi: 10.1038/ncomms14994 28440270
17. Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A, Jonasdottir A, et al. Fine-scale recombination rate differences between sexes, populations and individuals. Nature. 2010;467(7319):1099–1103. doi: 10.1038/nature09525 20981099
18. Donnelly KP. The probability that related individuals share some section of genome identical by descent. Theoretical Population Biology. 1983;23(1):34–63. doi: 10.1016/0040-5809(83)90004-7 6857549
19. Renwick JH. The mapping of human chromosomes. Annual Review of Genetics. 1971;5(1):81–120. doi: 10.1146/annurev.ge.05.120171.000501 16097652
20. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–861. doi: 10.1038/nature06258 17943122
21. Hinch AG, Tandon A, Patterson N, Song Y, Rohland N, Palmer CD, et al. The landscape of recombination in African Americans. Nature. 2011;476:170–175. doi: 10.1038/nature10336 21775986
22. Ottolini CS, Newnham LJ, Capalbo A, Natesan SA, Joshi HA, Cimadomo D, et al. Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nature Genetics. 2015;47:727–735. doi: 10.1038/ng.3306 25985139
23. Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J, et al. Genome Analyses of Single Human Oocytes. Cell. 2013;155(7):1492–1506. doi: 10.1016/j.cell.2013.11.040 24360273
24. Wang J, Fan HC, Behr B, Quake SR. Genome-wide Single-Cell Analysis of Recombination Activity and De Novo Mutation Rates in Human Sperm. Cell. 2012;150(2):402–412. doi: 10.1016/j.cell.2012.06.030 22817899
25. Lu S, Zong C, Fan W, Yang M, Li J, Chapman AR, et al. Probing Meiotic Recombination and Aneuploidy of Single Sperm Cells by Whole-Genome Sequencing. Science. 2012;338(6114):1627–1630. doi: 10.1126/science.1229112 23258895
26. Kirkness EF, Grindberg RV, Yee-Greenbaum J, Marshall CR, Scherer SW, Lasken RS, et al. Sequencing of isolated sperm cells for direct haplotyping of a human genome. Genome Research. 2013;23(5):826–832. doi: 10.1101/gr.144600.112 23282328
27. Bell AD, Mello CJ, Nemesh J, Brumbaugh SA, Wysoker A, McCarroll SA. Insights about variation in meiosis from 31,228 human sperm genomes. bioRxiv. 2019.
28. Sturtevant AH. The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. Journal of Experimental Zoology. 1913;14(1):43–59. doi: 10.1002/jez.1400140104
29. Foss E, Lande R, Stahl FW, Steinberg CM. Chiasma interference as a function of genetic distance. Genetics. 1993;133(3):681–691. 8454209
30. Zhao H, Speed TP, McPeek MS. Statistical analysis of crossover interference using the chi-square model. Genetics. 1995;139(2):1045–1056. 7713407
31. Vigeland MD. IBDsim: Simulation of Chromosomal Regions Shared by Family Members; 2019. Available from: https://CRAN.R-project.org/package=IBDsim.
32. Mitchell BD, Kammerer CM, Blangero J, Mahaney MC, Rainwater DL, Dyke B, et al. Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. Circulation. 1996;94(9):2159–2170. doi: 10.1161/01.cir.94.9.2159 8901667
33. Duggirala R, Blangero J, Almasy L, Dyer TD, Williams KL, Leach RJ, et al. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. American Journal of Human Genetics. 1999;64(4):1127–1140. doi: 10.1086/302316 10090898
34. Hunt KJ, Lehman DM, Arya R, Fowler S, Leach RJ, Göring HH, et al. Genome-Wide Linkage Analyses of Type 2 Diabetes in Mexican Americans. Diabetes. 2005;54(9):2655–2662. doi: 10.2337/diabetes.54.9.2655 16123354
35. Hemani G, Yang J, Vinkhuyzen A, Powell JE, Willemsen G, Hottenga JJ, et al. Inference of the Genetic Architecture Underlying BMI and Height with the Use of 20,240 Sibling Pairs. The American Journal of Human Genetics. 2013;93(5):865–875. doi: 10.1016/j.ajhg.2013.10.005 24183453
36. Ralph P, Coop G. The Geography of Recent Genetic Ancestry across Europe. PLOS Biology. 2013;11(5):e1001555. doi: 10.1371/journal.pbio.1001555 23667324
37. Browning BL, Browning SR. Improving the Accuracy and Efficiency of Identity-by-Descent Detection in Population Data. Genetics. 2013;194(2):459–471. doi: 10.1534/genetics.113.150029 23535385
38. Williams AL, Housman D, Rinard M, Gifford D. Rapid haplotype inference for nuclear families. Genome Biology. 2010;11(10):R108. doi: 10.1186/gb-2010-11-10-r108 21034477
39. Abecasis GR, Cherny SS, Cookson WO, Cardon LR. Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet. 2002;30(1):97–101. doi: 10.1038/ng786 11731797
40. Browning SR, Browning BL. Haplotype phasing: existing methods and new developments. Nature Reviews Genetics. 2011;12(10):703–714. doi: 10.1038/nrg3054 21921926
41. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867–2873. doi: 10.1093/bioinformatics/btq559 20926424
42. Karlin S, Taylor HM. A First Course in Stochastic Processes. 2nd ed. Academic Press; 1975.
43. Yakovlev G, Rundle JB, Shcherbakov R, Turcotte DL. Inter-arrival time distribution for the non-homogeneous Poisson process. arXiv. 2005;cond-mat:0507657.
44. Qiao Y, Sannerud J, Basu-Roy S, Hayward C, Williams AL. Distinguishing pedigree relationships using multi-way identical by descent sharing and sex-specific genetic maps. bioRxiv. 2019.
45. Gudbjartsson DF, Thorvaldsson T, Kong A, Gunnarsson G, Ingolfsdottir A. Allegro version 2. Nature Genetics. 2005;37(10):1015–1016. doi: 10.1038/ng1005-1015 16195711
46. Dietter J, Mattheisen M, Fürst R, Rüschendorf F, Wienker TF, Strauch K. Linkage analysis using sex-specific recombination fractions with GENEHUNTER-MODSCORE. Bioinformatics. 2006;23(1):64–70. doi: 10.1093/bioinformatics/btl539 17060360
47. Fingerlin TE, Abecasis GR, Boehnke M. Using sex-averaged genetic maps in multipoint linkage analysis when identity-by-descent status is incompletely known. Genetic Epidemiology. 2006;30(5):384–396. doi: 10.1002/gepi.20151 16685713
48. Mukhopadhyay N, Weeks DE. Linkage analysis of adult height with parent-of-origin effects in the Framingham Heart Study. BMC Genetics. 2003;4(1):S76. doi: 10.1186/1471-2156-4-S1-S76 14975144
49. Browning S. Pedigree Data Analysis With Crossover Interference. Genetics. 2003;164(4):1561–1566. 12930760
50. Thompson EA. MCMC Estimation of Multi-locus Genome Sharing and Multipoint Gene Location Scores. International Statistical Review. 2000;68(1):53–73. doi: 10.1111/j.1751-5823.2000.tb00387.x
51. Lin S, Speed TP. Relative efficiencies of the Chi-square recombination models for gene mapping with human pedigree data. Annals of Human Genetics. 1999;63(1):81–95. doi: 10.1046/j.1469-1809.1999.6310081.x 10738522
52. Kong A, Thorleifsson G, Frigge ML, Masson G, Gudbjartsson DF, Villemoes R, et al. Common and low-frequency variants associated with genome-wide recombination rate. Nature Genetics. 2013;46:11–16. doi: 10.1038/ng.2833 24270358
53. Consortium IMSG, 2 WTCCC, et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature. 2011;476(7359):214–219. doi: 10.1038/nature10251
54. Williams AL, Genovese G, Dyer T, Altemose N, Truax K, Jun G, et al. Non-crossover gene conversions show strong GC bias and unexpected clustering in humans. eLife. 2015. doi: 10.7554/eLife.04637
55. Ramstetter MD, Dyer TD, Lehman DM, Curran JE, Duggirala R, Blangero J, et al. Benchmarking Relatedness Inference Methods with Genome-Wide Data from Thousands of Relatives. Genetics. 2017;207(1):75–82. doi: 10.1534/genetics.117.1122 28739658
56. Lander ES, Green P. Construction of multilocus genetic linkage maps in humans. Proceedings of the National Academy of Sciences. 1987;84(8):2363–2367. doi: 10.1073/pnas.84.8.2363
57. Seidman DN, Shenoy SA, Kim M, Babu R, Dyer TD, Lehman DM, et al. Rapid, Phase-Free Detection of Long Identical by Descent Segments Enables Fast Relationship Classification. (Under review). 2019.
58. Gravel S. Population Genetics Models of Local Ancestry. Genetics. 2012;191:607–619. doi: 10.1534/genetics.112.139808 22491189
59. Cox DR, Smith WL. On the Superposition of Renewal Processes. Biometrika. 1954;41:91–99. doi: 10.2307/2333008
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 12
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Souvislost haplotypu M2 genu pro annexin A5 s opakovanými reprodukčními ztrátami
- Akutní intermitentní porfyrie
- Hodnota lidského choriového gonadotropinu v časném stadiu gravidity po IVF – asociace s rozvojem preeklampsie?
Nejčtenější v tomto čísle
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Phosphatidylserine synthetase regulates cellular homeostasis through distinct metabolic mechanisms
- APOBEC3A is a prominent cytidine deaminase in breast cancer
- Architecture of the Escherichia coli nucleoid