Latent transcriptional variations of individual Plasmodium falciparum uncovered by single-cell RNA-seq and fluorescence imaging
Autoři:
Katelyn A. Walzer aff001; Hélène Fradin aff002; Liane Y. Emerson aff001; David L. Corcoran aff002; Jen-Tsan Chi aff001
Působiště autorů:
Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
aff001; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
aff002
Vyšlo v časopise:
Latent transcriptional variations of individual Plasmodium falciparum uncovered by single-cell RNA-seq and fluorescence imaging. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008506
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008506
Souhrn
Malaria parasites follow a complex life cycle that consists of multiple stages that span from the human host to the mosquito vector. Among the species causing malaria, Plasmodium falciparum is the most lethal, with clinical symptoms manifesting during the intraerythrocytic developmental cycle (IDC). During the IDC, P. falciparum progresses through a synchronous and continuous cascade of transcriptional programming previously established using population analyses. While individual parasites are known to exhibit transcriptional variations to evade the host immune system or commit to a sexual fate, such rare expression heterogeneity is largely undetectable on a population level. Therefore, we combined single-cell RNA-sequencing (scRNA-seq) on a microfluidic platform and fluorescence imaging to delineate the transcriptional variations among individual parasites during late asexual and sexual stages. The comparison between asexual and sexual parasites uncovered a set of previously undefined sex-specific genes. Asexual parasites were segregated into three distinct clusters based on the differential expression of genes encoding SERAs, rhoptry proteins, and EXP2 plus transporters. Multiple pseudotime analyses revealed that these stage-specific transitions are distinct. RNA fluorescent in situ hybridization of cluster-specific genes validated distinct stage-specific expression and transitions during the IDC and defined the highly variable transcriptional pattern of EXP2. Additionally, these analyses indicated huge variations in the stage-specific transcript levels among parasites. Overall, scRNA-seq and RNA-FISH of P. falciparum revealed distinct stage transitions and unexpected degrees of heterogeneity with potential impact on transcriptional regulation during the IDC and adaptive responses to the host.
Klíčová slova:
Gametocytes – Gene expression – Malarial parasites – Parasitic cell cycles – Parasitic diseases – Parasitic life cycles – Plasmodium – Trophozoites
Zdroje
1. World Health Organization. World malaria report. Geneva, Switzerland: World Health Organization. p. volumes.
2. Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 2003;1(1):E5. Epub 2003/08/21. doi: 10.1371/journal.pbio.0000005 12929205; PubMed Central PMCID: PMC176545.
3. Otto TD, Wilinski D, Assefa S, Keane TM, Sarry LR, Bohme U, et al. New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Molecular microbiology. 2010;76(1):12–24. doi: 10.1111/j.1365-2958.2009.07026.x 20141604; PubMed Central PMCID: PMC2859250.
4. Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK, Haynes JD, et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science. 2003;301(5639):1503–8. doi: 10.1126/science.1087025 12893887.
5. Lopez-Barragan MJ, Lemieux J, Quinones M, Williamson KC, Molina-Cruz A, Cui K, et al. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC genomics. 2011;12:587. doi: 10.1186/1471-2164-12-587 22129310; PubMed Central PMCID: PMC3266614.
6. Llinas M, Bozdech Z, Wong ED, Adai AT, DeRisi JL. Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucleic Acids Res. 2006;34(4):1166–73. doi: 10.1093/nar/gkj517 16493140.
7. Kafsack BF, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG, et al. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature. 2014;507(7491):248–52. doi: 10.1038/nature12920 24572369; PubMed Central PMCID: PMC4040541.
8. Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C, Dickens NJ, et al. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. Nature. 2014;507(7491):253–7. doi: 10.1038/nature12970 24572359; PubMed Central PMCID: PMC4105895.
9. Filarsky M, Fraschka SA, Niederwieser I, Brancucci NMB, Carrington E, Carrio E, et al. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing. Science. 2018;359(6381):1259–63. doi: 10.1126/science.aan6042 29590075.
10. Scherf A, Lopez-Rubio JJ, Riviere L. Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol. 2008;62:445–70. Epub 2008/09/13. doi: 10.1146/annurev.micro.61.080706.093134 18785843.
11. Grun D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature. 2015;525(7568):251–5. doi: 10.1038/nature14966 26287467.
12. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013;498(7453):236–40. doi: 10.1038/nature12172 23685454; PubMed Central PMCID: PMC3683364.
13. Gasch AP, Yu FB, Hose J, Escalante LE, Place M, Bacher R, et al. Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress. PLoS biology. 2017;15(12):e2004050. doi: 10.1371/journal.pbio.2004050 29240790; PubMed Central PMCID: PMC5746276.
14. Poran A, Notzel C, Aly O, Mencia-Trinchant N, Harris CT, Guzman ML, et al. Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites. Nature. 2017;551(7678):95–9. doi: 10.1038/nature24280 29094698.
15. Brancucci N, De Niz M, Straub T, Ravel D, Sollelis L, Birren B, et al. Probing Plasmodium falciparum sexual commitment at the single-cell level [version 3; referees: 1 approved, 1 approved with reservations]. Wellcome Open Research. 2018;3(70). doi: 10.12688/wellcomeopenres.14645.3 30320226
16. Ngara M, Palmkvist M, Sagasser S, Hjelmqvist D, Bjorklund AK, Wahlgren M, et al. Exploring parasite heterogeneity using single-cell RNA-seq reveals a gene signature among sexual stage Plasmodium falciparum parasites. Exp Cell Res. 2018. doi: 10.1016/j.yexcr.2018.08.003 30096287.
17. Reid AJ, Talman AM, Bennett HM, Gomes AR, Sanders MJ, Illingworth CJR, et al. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. Elife. 2018;7. doi: 10.7554/eLife.33105 29580379; PubMed Central PMCID: PMC5871331.
18. Howick VM, Russell AJC, Andrews T, Heaton H, Reid AJ, Natarajan K, et al. The Malaria Cell Atlas: Single parasite transcriptomes across the complete Plasmodium life cycle. Science. 2019;365(6455). Epub 2019/08/24. doi: 10.1126/science.aaw2619 31439762.
19. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets. Cell. 2015;161(5):1202–14. doi: 10.1016/j.cell.2015.05.002 26000488; PubMed Central PMCID: PMC4481139.
20. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nature communications. 2017;8:14049. doi: 10.1038/ncomms14049 28091601; PubMed Central PMCID: PMC5241818 L.M., D.A.M., S.Y.N., M.S.L., P.W.W., C.M.H., R.B., A.W., K.D.N., T.S.M. and B.J.H. are employees of 10x Genomics.
21. Soumillon M, Cacchiarelli D, Semrau S, van Oudenaarden A, Mikkelsen TS. Characterization of directed differentiation by high-throughput single-cell RNA-Seq. bioRxiv. 2014. doi: 10.1101/003236
22. Picelli S, Bjorklund AK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nature methods. 2013;10(11):1096–8. doi: 10.1038/nmeth.2639 24056875.
23. Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, et al. A proteomic view of the Plasmodium falciparum life cycle. Nature. 2002;419(6906):520–6. Epub 2002/10/09. doi: 10.1038/nature01107 nature01107 [pii]. 12368866.
24. Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, et al. SC3: consensus clustering of single-cell RNA-seq data. Nat Methods. 2017;14(5):483–6. doi: 10.1038/nmeth.4236 28346451; PubMed Central PMCID: PMC5410170.
25. Silvestrini F, Bozdech Z, Lanfrancotti A, Di Giulio E, Bultrini E, Picci L, et al. Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Mol Biochem Parasitol. 2005;143(1):100–10. Epub 2005/07/20. doi: 10.1016/j.molbiopara.2005.04.015 16026866.
26. Young JA, Fivelman QL, Blair PL, de la Vega P, Le Roch KG, Zhou Y, et al. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol Biochem Parasitol. 2005;143(1):67–79. Epub 2005/07/12. doi: 10.1016/j.molbiopara.2005.05.007 16005087.
27. Walzer KA, Kubicki DM, Tang X, Chi JT. Single-Cell Analysis Reveals Distinct Gene Expression and Heterogeneity in Male and Female Plasmodium falciparum Gametocytes. mSphere. 2018;3(2). doi: 10.1128/mSphere.00130-18 29643077; PubMed Central PMCID: PMC5909122.
28. Lasonder E, Rijpma SR, van Schaijk BC, Hoeijmakers WA, Kensche PR, Gresnigt MS, et al. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Res. 2016;44(13):6087–101. Epub 2016/06/15. doi: 10.1093/nar/gkw536 27298255; PubMed Central PMCID: PMC5291273.
29. Eksi S, Morahan BJ, Haile Y, Furuya T, Jiang H, Ali O, et al. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLoS Pathog. 2012;8(10):e1002964. Epub 2012/10/25. doi: 10.1371/journal.ppat.1002964 23093935; PubMed Central PMCID: PMC3475683.
30. Elsworth B, Matthews K, Nie CQ, Kalanon M, Charnaud SC, Sanders PR, et al. PTEX is an essential nexus for protein export in malaria parasites. Nature. 2014;511(7511):587–91. doi: 10.1038/nature13555 25043043.
31. Beck JR, Muralidharan V, Oksman A, Goldberg DE. PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature. 2014;511(7511):592–5. doi: 10.1038/nature13574 25043010; PubMed Central PMCID: PMC4130291.
32. Garten M, Nasamu AS, Niles JC, Zimmerberg J, Goldberg DE, Beck JR. EXP2 is a nutrient-permeable channel in the vacuolar membrane of Plasmodium and is essential for protein export via PTEX. Nat Microbiol. 2018. doi: 10.1038/s41564-018-0222-7 30150733.
33. Gold DA, Kaplan AD, Lis A, Bett GC, Rosowski EE, Cirelli KM, et al. The Toxoplasma Dense Granule Proteins GRA17 and GRA23 Mediate the Movement of Small Molecules between the Host and the Parasitophorous Vacuole. Cell host & microbe. 2015;17(5):642–52. doi: 10.1016/j.chom.2015.04.003 25974303; PubMed Central PMCID: PMC4435723.
34. Koenderink JB, Kavishe RA, Rijpma SR, Russel FG. The ABCs of multidrug resistance in malaria. Trends Parasitol. 2010;26(9):440–6. doi: 10.1016/j.pt.2010.05.002 20541973.
35. Martin RE, Henry RI, Abbey JL, Clements JD, Kirk K. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol. 2005;6(3):R26. Epub 2005/03/19. gb-2005-6-3-r26 [pii] doi: 10.1186/gb-2005-6-3-r26 15774027.
36. Lustigman S, Anders RF, Brown GV, Coppel RL. The mature-parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum associates with the erythrocyte membrane skeletal protein, band 4.1. Molecular and biochemical parasitology. 1990;38(2):261–70. doi: 10.1016/0166-6851(90)90029-l 2183050.
37. Magowan C, Coppel RL, Lau AO, Moronne MM, Tchernia G, Mohandas N. Role of the Plasmodium falciparum mature-parasite-infected erythrocyte surface antigen (MESA/PfEMP-2) in malarial infection of erythrocytes. Blood. 1995;86(8):3196–204. 7579415.
38. Zhang M, Faou P, Maier AG, Rug M. Plasmodium falciparum exported protein PFE60 influences Maurer's clefts architecture and virulence complex composition. International journal for parasitology. 2018;48(1):83–95. doi: 10.1016/j.ijpara.2017.09.003 29100811.
39. Parish LA, Mai DW, Jones ML, Kitson EL, Rayner JC. A member of the Plasmodium falciparum PHIST family binds to the erythrocyte cytoskeleton component band 4.1. Malaria journal. 2013;12:160. doi: 10.1186/1475-2875-12-160 23663475; PubMed Central PMCID: PMC3658886.
40. Counihan NA, Kalanon M, Coppel RL, de Koning-Ward TF. Plasmodium rhoptry proteins: why order is important. Trends Parasitol. 2013;29(5):228–36. Epub 2013/04/11. doi: 10.1016/j.pt.2013.03.003 23570755.
41. Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT, et al. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. Am J Pathol. 1999;155(2):395–410. doi: 10.1016/S0002-9440(10)65136-X PubMed Central PMCID: PMC1866852. 10433933
42. Collins CR, Hackett F, Atid J, Tan MSY, Blackman MJ. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLoS Pathog. 2017;13(7):e1006453. Epub 2017/07/07. doi: 10.1371/journal.ppat.1006453 28683142; PubMed Central PMCID: PMC5500368.
43. Lasonder E, Ishihama Y, Andersen JS, Vermunt AM, Pain A, Sauerwein RW, et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature. 2002;419(6906):537–42. doi: 10.1038/nature01111 12368870.
44. Gomez-Diaz E, Yerbanga RS, Lefevre T, Cohuet A, Rowley MJ, Ouedraogo JB, et al. Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae. Sci Rep. 2017;7:40655. doi: 10.1038/srep40655 28091569; PubMed Central PMCID: PMC5238449.
45. Flueck C, Bartfai R, Volz J, Niederwieser I, Salcedo-Amaya AM, Alako BT, et al. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLoS Pathog. 2009;5(9):e1000569. doi: 10.1371/journal.ppat.1000569 19730695; PubMed Central PMCID: PMC2731224.
46. Rovira-Graells N, Gupta AP, Planet E, Crowley VM, Mok S, Ribas de Pouplana L, et al. Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res. 2012;22(5):925–38. doi: 10.1101/gr.129692.111 22415456; PubMed Central PMCID: PMC3337437.
47. Gonzales JM, Patel JJ, Ponmee N, Jiang L, Tan A, Maher SP, et al. Regulatory hotspots in the malaria parasite genome dictate transcriptional variation. PLoS Biol. 2008;6(9):e238. doi: 10.1371/journal.pbio.0060238 18828674; PubMed Central PMCID: PMC2553844.
48. Raser JM, O'Shea EK. Noise in gene expression: origins, consequences, and control. Science. 2005;309(5743):2010–3. doi: 10.1126/science.1105891 16179466; PubMed Central PMCID: PMC1360161.
49. Chen P-H, Hong J, Chi J-T. Discovery, Genomic Analysis, and Functional Role of the Erythrocyte RNAs. Current Pathobiology Reports. 2017:1–6. doi: 10.1007/s40139-017-0124-z
50. Doss J, Corcoran D, Jima D, Telen M, Dave S, Chi J-T. A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes. BMC Genomics. 2015;16(1):952. doi: 10.1186/s12864-015-2156-2 26573221
51. Yang WH, Doss JF, Walzer KA, McNulty SM, Wu J, Roback JD, et al. Angiogenin-mediated tRNA cleavage as a novel feature of stored red blood cells. Br J Haematol. 2018. doi: 10.1111/bjh.15605 30368767.
52. Walzer K, Chi J-T. Trans-kingdom small RNA transfer during host-pathogen interactions: the case of P. falciparum and erythrocytes. RNA Biology. doi: 10.1080/15476286.2017.1294307 28277932
53. LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012;12(2):187–99. Epub 2012/08/21. doi: 10.1016/j.chom.2012.06.007 22901539; PubMed Central PMCID: PMC3442262.
54. Regev-Rudzki N, Wilson Danny W, Carvalho Teresa G, Sisquella X, Coleman Bradley M, Rug M, et al. Cell-Cell Communication between Malaria-Infected Red Blood Cells via Exosome-like Vesicles. Cell. 2013;153(5):1120–33. doi: 10.1016/j.cell.2013.04.029 23683579
55. Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673–5. doi: 10.1126/science.781840 781840.
56. Cranmer SL, Magowan C, Liang J, Coppel RL, Cooke BM. An alternative to serum for cultivation of Plasmodium falciparum in vitro. Trans R Soc Trop Med Hyg. 1997;91(3):363–5. Epub 1997/05/01. doi: 10.1016/s0035-9203(97)90110-3 9231219.
57. Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979;65(3):418–20. 383936.
58. Saliba KS, Jacobs-Lorena M. Production of Plasmodium falciparum gametocytes in vitro. Methods in molecular biology. 2013;923:17–25. doi: 10.1007/978-1-62703-026-7_2 22990768.
59. http://www.bioinformatics.babraham.ac.uk/projects/trim_galore.
60. Martin M. CUTADAPT removes adapter sequences from high-throughput sequencing reads2011.
61. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. Epub 2012/10/30. doi: 10.1093/bioinformatics/bts635 23104886; PubMed Central PMCID: PMC3530905.
62. http://www-huber.embl.de/users/anders/HTSeq/.
63. McCarthy DJ, Campbell KR, Lun AT, Wills QF. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017;33(8):1179–86. doi: 10.1093/bioinformatics/btw777 28088763; PubMed Central PMCID: PMC5408845.
64. Lun AT, McCarthy DJ, Marioni JC. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res. 2016;5:2122. doi: 10.12688/f1000research.9501.2 27909575; PubMed Central PMCID: PMC5112579.
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 12
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Souvislost haplotypu M2 genu pro annexin A5 s opakovanými reprodukčními ztrátami
- Akutní intermitentní porfyrie
- Hodnota lidského choriového gonadotropinu v časném stadiu gravidity po IVF – asociace s rozvojem preeklampsie?
Nejčtenější v tomto čísle
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Phosphatidylserine synthetase regulates cellular homeostasis through distinct metabolic mechanisms
- APOBEC3A is a prominent cytidine deaminase in breast cancer
- Architecture of the Escherichia coli nucleoid