A candidate gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21
Autoři:
Jonathan M. Chernus aff001; Emily G. Allen aff002; Zhen Zeng aff003; Eva R. Hoffman aff004; Terry J. Hassold aff005; Eleanor Feingold aff001; Stephanie L. Sherman aff002
Působiště autorů:
Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
aff001; Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
aff002; Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
aff003; Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
aff004; School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington, United States of America
aff005
Vyšlo v časopise:
A candidate gene analysis and GWAS for genes associated with maternal nondisjunction of chromosome 21. PLoS Genet 15(12): e32767. doi:10.1371/journal.pgen.1008414
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pgen.1008414
Souhrn
Human nondisjunction errors in oocytes are the leading cause of pregnancy loss, and for pregnancies that continue to term, the leading cause of intellectual disabilities and birth defects. For the first time, we have conducted a candidate gene and genome-wide association study to identify genes associated with maternal nondisjunction of chromosome 21 as a first step to understand predisposing factors. A total of 2,186 study participants were genotyped on the HumanOmniExpressExome-8v1-2 array. These participants included 749 live birth offspring with standard trisomy 21 and 1,437 parents. Genotypes from the parents and child were then used to identify mothers with nondisjunction errors derived in the oocyte and to establish the type of error (meiosis I or meiosis II). We performed a unique set of subgroup comparisons designed to leverage our previous work suggesting that the etiologies of meiosis I and meiosis II nondisjunction differ for trisomy 21. For the candidate gene analysis, we selected genes associated with chromosome dynamics early in meiosis and genes associated with human global recombination counts. Several candidate genes showed strong associations with maternal nondisjunction of chromosome 21, demonstrating that genetic variants associated with normal variation in meiotic processes can be risk factors for nondisjunction. The genome-wide analysis also suggested several new potentially associated loci, although follow-up studies using independent samples are required.
Klíčová slova:
Down syndrome – Genetic loci – Genome-wide association studies – Homologous recombination – Chromosome structure and function – Chromosomes – Meiosis – Oocytes
Zdroje
1. Hassold T, Hall H, Hunt P. The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet. 2007;16 Spec No. 2:R203-8. Epub 2007/10/04. doi: 10.1093/hmg/ddm243 17911163.
2. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91. Epub 2001/04/03. doi: 10.1038/35066065 11283700.
3. Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13(7):493–504. Epub 2012/06/19. doi: 10.1038/nrg3245 22705668; PubMed Central PMCID: PMC3551553.
4. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, et al. Aneuploidy across individual chromosomes at the embryonic level in trophectoderm biopsies: changes with patient age and chromosome structure. J Assist Reprod Genet. 2014;31(11):1501–9. Epub 2014/09/23. doi: 10.1007/s10815-014-0333-x 25241130; PubMed Central PMCID: PMC4389946.
5. Sherman SL, Allen EG, Bean LJH. Maternal age and oocyte aneuploidy: lessons Learned from trisomy 21. In: Schlegel P, Fauser B, Carrell D, Racowsky C, editors. Biennial Review of Infertility. New York, NY: Springer; 2013. pp. 69–85
6. Hook EB, Mutton DE, Ide R, Alberman E, Bobrow M. The natural history of Down syndrome conceptuses diagnosed prenatally that are not electively terminated. Am J Hum Genet. 1995;57(4):875–81. Epub 1995/10/01. 7573049; PubMed Central PMCID: PMC1801486.
7. Hassold T, Chiu D, Yamane JA. Parental origin of autosomal trisomies. Ann Hum Genet. 1984;48(2):129–44. Epub 1984/05/01. doi: 10.1111/j.1469-1809.1984.tb01008.x 6234852.
8. Freeman SB, Allen EG, Oxford-Wright CL, Tinker SW, Druschel C, Hobbs CA, et al. The National Down Syndrome Project: design and implementation. Public Health Rep. 2007;122(1):62–72. Epub 2007/01/24. doi: 10.1177/003335490712200109 17236610; PubMed Central PMCID: PMC1802119.
9. Bolcun-Filas E, Schimenti JC. Genetics of meiosis and recombination in mice. Int Rev Cell Mol Biol. 2012;298:179–227. Epub 2012/08/11. doi: 10.1016/B978-0-12-394309-5.00005-5 22878107.
10. Cahoon CK, Hawley RS. Regulating the construction and demolition of the synaptonemal complex. Nat Struct Mol Biol. 2016;23(5):369–77. Epub 2016/05/05. doi: 10.1038/nsmb.3208 27142324.
11. Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol. 2015;7(6). Epub 2015/05/20. doi: 10.1101/cshperspect.a016626 25986558; PubMed Central PMCID: PMC4448610.
12. Moses MJ. Chromosomal structures in crayfish spermatocytes. J Biophys Biochem Cytol. 1956;2(2):215–8. Epub 1956/03/25. doi: 10.1083/jcb.2.2.215 13319383; PubMed Central PMCID: PMC2223961.
13. Fawcett DW. The fine structure of chromosomes in the meiotic prophase of vertebrate spermatocytes. J Biophys Biochem Cytol. 1956;2(4):403–6. Epub 1956/07/25. doi: 10.1083/jcb.2.4.403 13357504; PubMed Central PMCID: PMC2229679.
14. Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, et al. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet. 2009;5(10):e1000702. Epub 2009/10/24. doi: 10.1371/journal.pgen.1000702 19851446; PubMed Central PMCID: PMC2758600.
15. Daniel K, Lange J, Hached K, Fu J, Anastassiadis K, Roig I, et al. Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nat Cell Biol. 2011;13(5):599–610. Epub 2011/04/12. doi: 10.1038/ncb2213 21478856; PubMed Central PMCID: PMC3087846.
16. Cole F, Keeney S, Jasin M. Evolutionary conservation of meiotic DSB proteins: more than just Spo11. Genes Dev. 2010;24(12):1201–7. Epub 2010/06/17. doi: 10.1101/gad.1944710 20551169; PubMed Central PMCID: PMC2885656.
17. Sansam CL, Pezza RJ. Connecting by breaking and repairing: mechanisms of DNA strand exchange in meiotic recombination. FEBS J. 2015;282(13):2444–57. Epub 2015/05/09. doi: 10.1111/febs.13317 25953379; PubMed Central PMCID: PMC4573575.
18. de Vries SS, Baart EB, Dekker M, Siezen A, de Rooij DG, de Boer P, et al. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 1999;13(5):523–31. Epub 1999/03/11. doi: 10.1101/gad.13.5.523 10072381; PubMed Central PMCID: PMC316502.
19. Edelmann W, Cohen PE, Kane M, Lau K, Morrow B, Bennett S, et al. Meiotic pachytene arrest in MLH1-deficient mice. Cell. 1996;85(7):1125–34. Epub 1996/06/28. doi: 10.1016/s0092-8674(00)81312-4 8674118.
20. Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H Jr., et al. MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 2000;14(9):1085–97. Epub 2000/05/16. 10809667; PubMed Central PMCID: PMC316572.
21. Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D, Gilgeous A, et al. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet. 2002;31(4):385–90. Epub 2002/07/02. doi: 10.1038/ng931 12091911.
22. Plug AW, Peters AH, Keegan KS, Hoekstra MF, de Boer P, Ashley T. Changes in protein composition of meiotic nodules during mammalian meiosis. J Cell Sci. 1998;111 (Pt 4):413–23. Epub 1998/04/04. 9443891.
23. Manhart CM, Alani E. Roles for mismatch repair family proteins in promoting meiotic crossing over. DNA Repair (Amst). 2016;38:84–93. Epub 2015/12/22. doi: 10.1016/j.dnarep.2015.11.024 26686657; PubMed Central PMCID: PMC4740264.
24. Lamb NE, Sherman SL, Hassold TJ. Effect of meiotic recombination on the production of aneuploid gametes in humans. Cytogenet Genome Res. 2005;111(3–4):250–5. Epub 2005/09/30. doi: 10.1159/000086896 16192701.
25. Lamb NE, Freeman SB, Savage-Austin A, Pettay D, Taft L, Hersey J, et al. Susceptible chiasmate configurations of chromosome 21 predispose to non-disjunction in both maternal meiosis I and meiosis II. Nat Genet. 1996;14(4):400–5. Epub 1996/12/01. doi: 10.1038/ng1296-400 8944019.
26. Lamb NE, Yu K, Shaffer J, Feingold E, Sherman SL. Association between maternal age and meiotic recombination for trisomy 21. Am J Hum Genet. 2005;76(1):91–9. Epub 2004/11/20. doi: 10.1086/427266 15551222; PubMed Central PMCID: PMC1196437.
27. Oliver TR, Feingold E, Yu K, Cheung V, Tinker S, Yadav-Shah M, et al. New insights into human nondisjunction of chromosome 21 in oocytes. PLoS Genet. 2008;4(3):e1000033. Epub 2008/03/29. doi: 10.1371/journal.pgen.1000033 18369452; PubMed Central PMCID: PMC2265487.
28. Oliver TR, Middlebrooks CD, Tinker SW, Allen EG, Bean LJ, Begum F, et al. An examination of the relationship between hotspots and recombination associated with chromosome 21 nondisjunction. PLoS One. 2014;9(6):e99560. Epub 2014/06/14. doi: 10.1371/journal.pone.0099560 24926858; PubMed Central PMCID: PMC4057233.
29. Oliver TR, Tinker SW, Allen EG, Hollis N, Locke AE, Bean LJ, et al. Altered patterns of multiple recombinant events are associated with nondisjunction of chromosome 21. Hum Genet. 2012;131(7):1039–46. Epub 2011/12/14. doi: 10.1007/s00439-011-1121-7 22160426; PubMed Central PMCID: PMC3925977.
30. Lamb NE, Feingold E, Savage A, Avramopoulos D, Freeman S, Gu Y, et al. Characterization of susceptible chiasma configurations that increase the risk for maternal nondisjunction of chromosome 21. Hum Mol Genet. 1997;6(9):1391–9. Epub 1997/09/01. doi: 10.1093/hmg/6.9.1391 9285774.
31. Middlebrooks CD, Mukhopadhyay N, Tinker SW, Allen EG, Bean LJ, Begum F, et al. Evidence for dysregulation of genome-wide recombination in oocytes with nondisjoined chromosomes 21. Hum Mol Genet. 2014;23(2):408–17. Epub 2013/09/10. doi: 10.1093/hmg/ddt433 24014426; PubMed Central PMCID: PMC3869361.
32. Brown AS, Feingold E, Broman KW, Sherman SL. Genome-wide variation in recombination in female meiosis: a risk factor for non-disjunction of chromosome 21. Hum Mol Genet. 2000;9(4):515–23. Epub 2000/03/04. doi: 10.1093/hmg/9.4.515 10699174.
33. Kong A, Thorleifsson G, Frigge ML, Masson G, Gudbjartsson DF, Villemoes R, et al. Common and low-frequency variants associated with genome-wide recombination rate. Nat Genet. 2014;46(1):11–6. Epub 2013/11/26. doi: 10.1038/ng.2833 24270358.
34. Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T, et al. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol. 2010;34(6):591–602. Epub 2010/08/19. doi: 10.1002/gepi.20516 20718045; PubMed Central PMCID: PMC3061487.
35. Lin Y, Tseng GC, Cheong SY, Bean LJ, Sherman SL, Feingold E. Smarter clustering methods for SNP genotype calling. Bioinformatics. 2008;24(23):2665–71. Epub 2008/10/02. doi: 10.1093/bioinformatics/btn509 18826959; PubMed Central PMCID: PMC2732271.
36. Conlin LK, Thiel BD, Bonnemann CG, Medne L, Ernst LM, Zackai EH, et al. Mechanisms of mosaicism, chimerism and uniparental disomy identified by single nucleotide polymorphism array analysis. Hum Mol Genet. 2010;19(7):1263–75. Epub 2010/01/08. doi: 10.1093/hmg/ddq003 20053666; PubMed Central PMCID: PMC3146011.
37. Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, et al. High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 2006;16(9):1136–48. Epub 2006/08/11. doi: 10.1101/gr.5402306 PubMed Central PMCID: PMC1557768. 16899659
38. Laurie CC, Laurie CA, Rice K, Doheny KF, Zelnick LR, McHugh CP, et al. Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet. 2012;44(6):642–50. Epub 2012/05/09. doi: 10.1038/ng.2271 22561516; PubMed Central PMCID: PMC3366033.
39. Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2(12):e190. Epub 2006/12/30. doi: 10.1371/journal.pgen.0020190 17194218; PubMed Central PMCID: PMC1713260.
40. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529. Epub 2009/06/23. doi: 10.1371/journal.pgen.1000529 19543373; PubMed Central PMCID: PMC2689936.
41. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. Epub 2012/11/07. doi: 10.1038/nature11632 23128226; PubMed Central PMCID: PMC3498066.
42. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF. Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet. 2008;17(R2):R122–8. Epub 2008/10/15. doi: 10.1093/hmg/ddn288 18852200; PubMed Central PMCID: PMC2782358.
43. Shaffer JR, Wang X, Feingold E, Lee M, Begum F, Weeks DE, et al. Genome-wide association scan for childhood caries implicates novel genes. J Dent Res. 2011;90(12):1457–62. Epub 2011/09/24. doi: 10.1177/0022034511422910 21940522; PubMed Central PMCID: PMC3215757.
44. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993;52(3):506–16. Epub 1993/03/01. 8447318; PubMed Central PMCID: PMC1682161.
45. Kerstann KF, Feingold E, Freeman SB, Bean LJ, Pyatt R, Tinker S, et al. Linkage disequilibrium mapping in trisomic populations: analytical approaches and an application to congenital heart defects in Down syndrome. Genet Epidemiol. 2004;27(3):240–51. Epub 2004/09/25. doi: 10.1002/gepi.20019 15389927.
46. Li J, Ji L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb). 2005;95(3):221–7. Epub 2005/08/04. doi: 10.1038/sj.hdy.6800717 16077740.
47. Lee J, Hirano T. RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis. J Cell Biol. 2011;192(2):263–76. Epub 2011/01/19. doi: 10.1083/jcb.201008005 21242291; PubMed Central PMCID: PMC3172173.
48. Ishiguro K, Kim J, Fujiyama-Nakamura S, Kato S, Watanabe Y. A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing. EMBO Rep. 2011;12(3):267–75. Epub 2011/01/29. doi: 10.1038/embor.2011.2 21274006; PubMed Central PMCID: PMC3059921.
49. Gutierrez-Caballero C, Herran Y, Sanchez-Martin M, Suja JA, Barbero JL, Llano E, et al. Identification and molecular characterization of the mammalian alpha-kleisin RAD21L. Cell Cycle. 2011;10(9):1477–87. Epub 2011/04/30. doi: 10.4161/cc.10.9.15515 21527826.
50. Herran Y, Gutierrez-Caballero C, Sanchez-Martin M, Hernandez T, Viera A, Barbero JL, et al. The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO J. 2011;30(15):3091–105. Epub 2011/07/12. doi: 10.1038/emboj.2011.222 21743440; PubMed Central PMCID: PMC3160193.
51. Watanabe Y, Nurse P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature. 1999;400(6743):461–4. Epub 1999/08/10. doi: 10.1038/22774 10440376.
52. Klein F, Mahr P, Galova M, Buonomo SB, Michaelis C, Nairz K, et al. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell. 1999;98(1):91–103. Epub 1999/07/21. doi: 10.1016/S0092-8674(00)80609-1 10412984.
53. Minase G, Miyamoto T, Miyagawa Y, Iijima M, Ueda H, Saijo Y, et al. Single-nucleotide polymorphisms in the human RAD21L gene may be a genetic risk factor for Japanese patients with azoospermia caused by meiotic arrest and Sertoli cell-only syndrome. Hum Fertil (Camb). 2017;20(3):217–20. Epub 2017/06/22. doi: 10.1080/14647273.2017.1292004 28635411.
54. Pezza RJ, Voloshin ON, Volodin AA, Boateng KA, Bellani MA, Mazin AV, et al. The dual role of HOP2 in mammalian meiotic homologous recombination. Nucleic Acids Res. 2014;42(4):2346–57. Epub 2013/12/07. doi: 10.1093/nar/gkt1234 24304900; PubMed Central PMCID: PMC3936763.
55. Kerzendorfer C, Vignard J, Pedrosa-Harand A, Siwiec T, Akimcheva S, Jolivet S, et al. The Arabidopsis thaliana MND1 homologue plays a key role in meiotic homologous pairing, synapsis and recombination. J Cell Sci. 2006;119(Pt 12):2486–96. Epub 2006/06/10. doi: 10.1242/jcs.02967 16763194.
56. Domenichini S, Raynaud C, Ni DA, Henry Y, Bergounioux C. Atmnd1-delta1 is sensitive to gamma-irradiation and defective in meiotic DNA repair. DNA Repair (Amst). 2006;5(4):455–64. Epub 2006/01/31. doi: 10.1016/j.dnarep.2005.12.007 16442857.
57. Zhao W, Sung P. Significance of ligand interactions involving Hop2-Mnd1 and the RAD51 and DMC1 recombinases in homologous DNA repair and XX ovarian dysgenesis. Nucleic Acids Res. 2015;43(8):4055–66. Epub 2015/03/31. doi: 10.1093/nar/gkv259 25820426; PubMed Central PMCID: PMC4417169.
58. Lee DH, Goodarzi AA, Adelmant GO, Pan Y, Jeggo PA, Marto JA, et al. Phosphoproteomic analysis reveals that PP4 dephosphorylates KAP-1 impacting the DNA damage response. EMBO J. 2012;31(10):2403–15. Epub 2012/04/12. doi: 10.1038/emboj.2012.86 22491012; PubMed Central PMCID: PMC3364739.
59. Yoon YS, Lee MW, Ryu D, Kim JH, Ma H, Seo WY, et al. Suppressor of MEK null (SMEK)/protein phosphatase 4 catalytic subunit (PP4C) is a key regulator of hepatic gluconeogenesis. Proc Natl Acad Sci U S A. 2010;107(41):17704–9. Epub 2010/09/30. doi: 10.1073/pnas.1012665107 20876121; PubMed Central PMCID: PMC2955085.
60. Kim BR, Seo SH, Park MS, Lee SH, Kwon Y, Rho SB. sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1alpha signaling pathways. Oncotarget. 2015;6(31):31830–43. Epub 2015/09/18. doi: 10.18632/oncotarget.5570 26378810; PubMed Central PMCID: PMC4741643.
61. Choi SH, Ruggiero D, Sorice R, Song C, Nutile T, Vernon Smith A, et al. Six Novel Loci Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide Association Studies. PLoS Genet. 2016;12(2):e1005874. Epub 2016/02/26. doi: 10.1371/journal.pgen.1005874 26910538; PubMed Central PMCID: PMC4766012.
62. McFee RM, Cupp AS. Vascular contributions to early ovarian development: potential roles of VEGFA isoforms. Reprod Fertil Dev. 2013;25(2):333–42. Epub 2012/10/02. doi: 10.1071/RD12134 23021322.
63. Robinson RS, Woad KJ, Hammond AJ, Laird M, Hunter MG, Mann GE. Angiogenesis and vascular function in the ovary. Reproduction. 2009;138(6):869–81. Epub 2009/09/30. doi: 10.1530/REP-09-0283 19786399.
64. Kim AM, Vogt S, O'Halloran TV, Woodruff TK. Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol. 2010;6(9):674–81. Epub 2010/08/10. doi: 10.1038/nchembio.419 20693991; PubMed Central PMCID: PMC2924620.
65. Kim AM, Bernhardt ML, Kong BY, Ahn RW, Vogt S, Woodruff TK, et al. Zinc sparks are triggered by fertilization and facilitate cell cycle resumption in mammalian eggs. ACS Chem Biol. 2011;6(7):716–23. Epub 2011/04/30. doi: 10.1021/cb200084y 21526836; PubMed Central PMCID: PMC3171139.
66. Lisle RS, Anthony K, Randall MA, Diaz FJ. Oocyte-cumulus cell interactions regulate free intracellular zinc in mouse oocytes. Reproduction. 2013;145(4):381–90. Epub 2013/02/14. doi: 10.1530/REP-12-0338 23404848.
67. Dieterich K, Zouari R, Harbuz R, Vialard F, Martinez D, Bellayou H, et al. The Aurora Kinase C c.144delC mutation causes meiosis I arrest in men and is frequent in the North African population. Hum Mol Genet. 2009;18(7):1301–9. Epub 2009/01/17. doi: 10.1093/hmg/ddp029 19147683.
68. Fellmeth JE, Ghanaim EM, Schindler K. Characterization of macrozoospermia-associated AURKC mutations in a mammalian meiotic system. Hum Mol Genet. 2016;25(13):2698–711. Epub 2016/04/24. doi: 10.1093/hmg/ddw128 27106102.
69. Adriaenssens T, Mazoyer C, Segers I, Wathlet S, Smitz J. Differences in collagen expression in cumulus cells after exposure to highly purified menotropin or recombinant follicle-stimulating hormone in a mouse follicle culture model. Biol Reprod. 2009;80(5):1015–25. Epub 2009/01/24. doi: 10.1095/biolreprod.107.067462 19164180.
70. Baumann C, Wang X, Yang L, Viveiros MM. Error-prone meiotic division and subfertility in mice with oocyte-conditional knockdown of pericentrin. J Cell Sci. 2017;130(7):1251–62. Epub 2017/02/15. doi: 10.1242/jcs.196188 28193732.
71. Holubcova Z, Blayney M, Elder K, Schuh M. Human oocytes. Error-prone chromosome-mediated spindle assembly favors chromosome segregation defects in human oocytes. Science. 2015;348(6239):1143–7. Epub 2015/06/06. doi: 10.1126/science.aaa9529 26045437; PubMed Central PMCID: PMC4477045.
72. Begum F, Chowdhury R, Cheung VG, Sherman SL, Feingold E. Genome-Wide Association Study of Meiotic Recombination Phenotypes. G3 (Bethesda). 2016;6(12):3995–4007. Epub 2016/10/14. doi: 10.1534/g3.116.035766 27733454; PubMed Central PMCID: PMC5144969.
73. Mao S, Wu F, Cao X, He M, Liu N, Wu H, et al. TDRP deficiency contributes to low sperm motility and is a potential risk factor for male infertility. Am J Transl Res. 2016;8(1):177–87. Epub 2016/04/14. 27069551; PubMed Central PMCID: PMC4759427.
74. Chen PJ, Huang YS. CPEB2-eEF2 interaction impedes HIF-1alpha RNA translation. EMBO J. 2012;31(4):959–71. Epub 2011/12/14. doi: 10.1038/emboj.2011.448 22157746; PubMed Central PMCID: PMC3280548.
75. Kurihara Y, Tokuriki M, Myojin R, Hori T, Kuroiwa A, Matsuda Y, et al. CPEB2, a novel putative translational regulator in mouse haploid germ cells. Biol Reprod. 2003;69(1):261–8. Epub 2003/04/04. doi: 10.1095/biolreprod.103.015677 12672660.
76. Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature. 2004;431(7006):325–9. Epub 2004/09/17. doi: 10.1038/nature02834 15372037.
77. Samwer M, Dehne HJ, Spira F, Kollmar M, Gerlich DW, Urlaub H, et al. The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis. EMBO J. 2013;32(13):1886–902. Epub 2013/06/04. doi: 10.1038/emboj.2013.108 23727888; PubMed Central PMCID: PMC3981176.
78. Mogessie B, Schuh M. Actin protects mammalian eggs against chromosome segregation errors. Science. 2017;357(6353). Epub 2017/08/26. doi: 10.1126/science.aal1647 28839045.
79. Liu QY, Lei JX, Sikorska M, Liu R. A novel brain-enriched E3 ubiquitin ligase RNF182 is up regulated in the brains of Alzheimer's patients and targets ATP6V0C for degradation. Mol Neurodegener. 2008;3:4. Epub 2008/02/27. doi: 10.1186/1750-1326-3-4 18298843; PubMed Central PMCID: PMC2279130.
80. Nectoux J, Fichou Y, Rosas-Vargas H, Cagnard N, Bahi-Buisson N, Nusbaum P, et al. Cell cloning-based transcriptome analysis in Rett patients: relevance to the pathogenesis of Rett syndrome of new human MeCP2 target genes. J Cell Mol Med. 2010;14(7):1962–74. Epub 2010/06/24. doi: 10.1111/j.1582-4934.2010.01107.x 20569274; PubMed Central PMCID: PMC3823278.
81. Goel P, Manning JA, Kumar S. NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins. Gene. 2015;557(1):1–10. Epub 2014/11/30. doi: 10.1016/j.gene.2014.11.051 25433090.
82. Low LH, Chow YL, Li Y, Goh CP, Putz U, Silke J, et al. Nedd4 family interacting protein 1 (Ndfip1) is required for ubiquitination and nuclear trafficking of BRCA1-associated ATM activator 1 (BRAT1) during the DNA damage response. J Biol Chem. 2015;290(11):7141–50. Epub 2015/01/30. doi: 10.1074/jbc.M114.613687 25631046; PubMed Central PMCID: PMC4358134.
83. Xu C, Fan CD, Wang X. Regulation of Mdm2 protein stability and the p53 response by NEDD4-1 E3 ligase. Oncogene. 2015;34(3):281–9. Epub 2014/01/15. doi: 10.1038/onc.2013.557 24413081.
84. Hodges CA, Revenkova E, Jessberger R, Hassold TJ, Hunt PA. SMC1beta-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat Genet. 2005;37(12):1351–5. Epub 2005/11/01. doi: 10.1038/ng1672 16258540.
85. Murdoch B, Owen N, Stevense M, Smith H, Nagaoka S, Hassold T, et al. Altered cohesin gene dosage affects Mammalian meiotic chromosome structure and behavior. PLoS Genet. 2013;9(2):e1003241. Epub 2013/02/15. doi: 10.1371/journal.pgen.1003241 23408896; PubMed Central PMCID: PMC3567145.
86. Hwang G, Sun F, O'Brien M, Eppig JJ, Handel MA, Jordan PW. SMC5/6 is required for the formation of segregation-competent bivalent chromosomes during meiosis I in mouse oocytes. Development. 2017;144(9):1648–60. Epub 2017/03/18. doi: 10.1242/dev.145607 28302748; PubMed Central PMCID: PMC5450844.
87. Ward A, Hopkins J, McKay M, Murray S, Jordan PW. Genetic Interactions Between the Meiosis-Specific Cohesin Components, STAG3, REC8, and RAD21L. G3 (Bethesda). 2016;6(6):1713–24. Epub 2016/05/14. doi: 10.1534/g3.116.029462 27172213; PubMed Central PMCID: PMC4889667.
88. Biswas U, Hempel K, Llano E, Pendas A, Jessberger R. Distinct Roles of Meiosis-Specific Cohesin Complexes in Mammalian Spermatogenesis. PLoS Genet. 2016;12(10):e1006389. Epub 2016/10/30. doi: 10.1371/journal.pgen.1006389 27792785; PubMed Central PMCID: PMC5085059.
89. Agostinho A, Manneberg O, van Schendel R, Hernandez-Hernandez A, Kouznetsova A, Blom H, et al. High density of REC8 constrains sister chromatid axes and prevents illegitimate synaptonemal complex formation. EMBO Rep. 2016;17(6):901–13. Epub 2016/05/14. doi: 10.15252/embr.201642030 27170622; PubMed Central PMCID: PMC5278604.
90. McNicoll F, Stevense M, Jessberger R. Cohesin in gametogenesis. Curr Top Dev Biol. 2013;102:1–34. Epub 2013/01/05. doi: 10.1016/B978-0-12-416024-8.00001-5 23287028.
91. Zickler D, Kleckner N. Meiotic chromosomes: integrating structure and function. Annu Rev Genet. 1999;33:603–754. Epub 2000/02/26. doi: 10.1146/annurev.genet.33.1.603 10690419.
92. Geisinger A, Benavente R. Mutations in Genes Coding for Synaptonemal Complex Proteins and Their Impact on Human Fertility. Cytogenet Genome Res. 2016;150(2):77–85. Epub 2016/12/21. doi: 10.1159/000453344 27997882.
93. Broman KW, Murray JC, Sheffield VC, White RL, Weber JL. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet. 1998;63(3):861–9. Epub 1998/08/27. doi: 10.1086/302011 PubMed Central PMCID: PMC1377399. 9718341
94. Cheung VG, Burdick JT, Hirschmann D, Morley M. Polymorphic variation in human meiotic recombination. Am J Hum Genet. 2007;80(3):526–30. Epub 2007/02/03. doi: 10.1086/512131 17273974; PubMed Central PMCID: PMC1821106.
95. Fledel-Alon A, Leffler EM, Guan Y, Stephens M, Coop G, Przeworski M. Variation in human recombination rates and its genetic determinants. PLoS One. 2011;6(6):e20321. Epub 2011/06/24. doi: 10.1371/journal.pone.0020321 21698098; PubMed Central PMCID: PMC3117798.
96. Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J, et al. Genome analyses of single human oocytes. Cell. 2013;155(7):1492–506. Epub 2013/12/24. doi: 10.1016/j.cell.2013.11.040 24360273.
97. Brieno-Enriquez MA, Cohen PE. Double trouble in human aneuploidy. Nat Genet. 2015;47(7):696–8. Epub 2015/06/27. doi: 10.1038/ng.3344 26111508.
98. MacLennan M, Crichton JH, Playfoot CJ, Adams IR. Oocyte development, meiosis and aneuploidy. Semin Cell Dev Biol. 2015;45:68–76. Epub 2015/10/11. doi: 10.1016/j.semcdb.2015.10.005 26454098; PubMed Central PMCID: PMC4828587.
99. Wassmann K. Sister chromatid segregation in meiosis II: deprotection through phosphorylation. Cell Cycle. 2013;12(9):1352–9. Epub 2013/04/12. doi: 10.4161/cc.24600 23574717; PubMed Central PMCID: PMC3674063.
100. Coop G, Wen X, Ober C, Pritchard JK, Przeworski M. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science. 2008;319(5868):1395–8. Epub 2008/02/02. doi: 10.1126/science.1151851 18239090.
101. Chowdhury R, Bois PR, Feingold E, Sherman SL, Cheung VG. Genetic analysis of variation in human meiotic recombination. PLoS Genet. 2009;5(9):e1000648. Epub 2009/09/19. doi: 10.1371/journal.pgen.1000648 19763160; PubMed Central PMCID: PMC2730532.
102. Kong A, Thorleifsson G, Stefansson H, Masson G, Helgason A, Gudbjartsson DF, et al. Sequence variants in the RNF212 gene associate with genome-wide recombination rate. Science. 2008;319(5868):1398–401. Epub 2008/02/02. doi: 10.1126/science.1152422 18239089.
103. Qiao H, Prasada Rao HB, Yang Y, Fong JH, Cloutier JM, Deacon DC, et al. Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat Genet. 2014;46(2):194–9. Epub 2014/01/07. doi: 10.1038/ng.2858 24390283; PubMed Central PMCID: PMC4356240.
104. Oliver TR, Middlebrooks C, Harden A, Scott N, Johnson B, Jones J, et al. Variation in the Zinc Finger of PRDM9 is Associated with the Absence of Recombination along Nondisjoined Chromosomes 21 of Maternal Origin. J Down Syndr Chromosom Abnorm. 2016;2(2). Epub 2017/07/14. doi: 10.4172/2472-1115.1000115 28702511; PubMed Central PMCID: PMC5502783.
105. McCoy RC, Demko Z, Ryan A, Banjevic M, Hill M, Sigurjonsson S, et al. Common variants spanning PLK4 are associated with mitotic-origin aneuploidy in human embryos. Science. 2015;348(6231):235–8. Epub 2015/04/11. doi: 10.1126/science.aaa3337 25859044; PubMed Central PMCID: PMC5519344.
Štítky
Genetika Reprodukční medicínaČlánek vyšel v časopise
PLOS Genetics
2019 Číslo 12
- Primární hyperoxalurie – aktuální možnosti diagnostiky a léčby
- Srdeční frekvence embrya může být faktorem užitečným v předpovídání výsledku IVF
- Akutní intermitentní porfyrie
- Vztah užívání alkoholu a mužské fertility
- Šanci na úspěšný průběh těhotenství snižují nevhodné hladiny progesteronu vznikající při umělém oplodnění
Nejčtenější v tomto čísle
- Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance
- Architecture of the Escherichia coli nucleoid
- Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude
- Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes