#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Droplet digitálna PCR ako nový dia­gnostický nástroj


Autoři: B. Váňová 1,2;  B. Malicherova 2;  T. Burjanivová 3;  A. Liskova 4;  K. Janikova 2,5;  K. Jasek 2;  Z. Lasabová 3;  M. Tatár 5;  L. Plank 6
Působiště autorů: Martin´s Center of Immunology, Ltd., Martin, Slovakia 1;  Biomedical Center Martin JFM CU, Martin, Slovakia 2;  Department of Molecular Biology JFM CU, Martin, Slovakia 3;  Clinic of Obstetrics and Gynecology JFM CU and University Hospital in Martin, Slovakia 4;  Department of Pathological Physiology JFM CU, Martin, Slovakia 5;  Department of Pathological Anatomy, JFM CU and University Hospital in Martin, Slovakia 6
Vyšlo v časopise: Klin Onkol 2021; 34(1): 33-39
Kategorie: Přehled
doi: https://doi.org/10.48095/ccko202133

Souhrn

Východiská: Podstatou moderných postupov liečby onkologických pacientov je v dnešnej dobe zacielenie konkrétnych molekúl zapojených do bunkovej signalizácie asociovanej s nádorovou iniciáciou a progresiou. Úspech uvedeného prístupu závisí od správne zvoleného dia­gnostického testu s vysokou citlivosťou, ktorý identifikuje výskyt a hladinu vybraných bio­markerov u pacientov pre selekciu tých, ktorí budú na liečivo reagovať a budú z neho benefitovať. Vývoj nových technológií a modernizácia tých známych, prispievajú k inováciám molekulárnej charakterizácie karcinómov, ktorá umožňuje detekciu mutačného stavu pacienta s vysokou citlivosťou a špecifickosťou. Cieľ: V práci diskutujeme o využití polymerázovej reťazovej reakcie (PCR) tretej generácie, tzv. droplet digitálnej PCR (ddPCR), v molekulárnej dia­gnostike karcinómov. Podľa štúdií uvedených v našom prehľade predstavuje ddPCR sľubný nástroj pri vytváraní genetického profilu pacientov s onkologickým ochorením. Optimalizácia a presná validácia môžu preto umožniť postupnú implementáciu ddPCR do klinickej praxe v oblasti  onkológie.

Klíčová slova:

rakovina – nádorové bio­markery – molekulárna dia­gnostika – ddPCR


Zdroje

1. World Health Organization. Cancer. [online]. Available from: https: //www.who.int/health-topics/can­cer#tab=tab_1.

2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100 (1): 57–70. doi: 10.1016/s0092-8674 (00) 81 683-9.

3. American Cancer Society. Cancer facts & figures 2018. [online]. Available from: https: //www.cancer.org/cancer/colon-rectal-cancer/about/what-is-colorectal-cancer.html.

4. Marks EI, Yee NS. Molecular genetics and targeted therapeutics in biliary tract carcinoma. World J Gastroenterol 2016; 22 (4): 1335–1347. doi: 10.3748/wjg.v22.i4.1335.

5. Verma M. Personalized medicine and cancer. J Pers Med 2012; 2 (1): 1–14. doi: 10.3390/jpm2010001.

6. Gil J, Laczmanska I, Pesz KA et al. Personalized medicine in oncology. New perspectives in management of gliomas. Contemp Oncol 2018; 22 (1A): 1–2. doi: 10.5114/wo.2018.73872.

7. National Comprehensive Cancer Network. Targeted therapy. [online]. Available from: https: //www.nccn.org/patients/resources/life_with_cancer/treatment/targeted_therapy.aspx.

8. Taube SE. Biomarkers in oncology: trials and tribulations. Ann N Y Acad Sci 2009; 1180: 111–118. doi: 10.1111/j.1749-6632.2009.05019.x.

9. Simon R. Clinical trial designs for evaluating the medical utility of prognostic and predictive bio­markers in oncology. Pers Med 2010; 7 (1): 33–47. doi: 10.2217/pme. 09.49.

10. Deschoolmeester V, Baay M, Specenier P et al. A review of the most promising bio­markers in colorectal cancer: one step closer to targeted therapy. The Oncologist 2010; 15 (7): 699–731. doi: 10.1634/theoncologist.2010-0025.

11. Mullis K, Faloona F, Scharf S et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 1986; 51 (Pt 1): 263–273. doi: 10.1101/sqb.1986.051.01.032.

12. Schaad NW, Frederick RD. Real-time PCR and its application for rapid plant disease dia­gnostics. Can J Plant Pathol 2002; 24 (3): 250–258.

13. Baker M. Digital PCR hits its stride. Nat Methods 2012; 9 (6): 541–544.

14. Hrstka R, Kolářová T, Michalová E et al. Vývoj metod založených na PCR a jejich aplikace v onkologickém výzkumu a praxi. Klin Onkol 2014; 27 (Suppl 1): S69–S74. doi: 10.14735/amko20141s69.

15. Liao P, Huang Y. Digital PCR: endless frontier of ‘divide and conquer.’ Micromachines (Basel) 2017; 8 (8): 231. doi: 10.3390/mi8080231.

16. Digital PCR – SK. [online]. Available from: //www.thermofisher.com/uk/en/home/life-science/pcr/digital-pcr.html.

17. Zhang C, Xing D. Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Res 2007; 35 (13): 4223–4237. doi: 10.1093/nar/gkm389.

18. Hindson BJ, Ness KD, Masquelier DA et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 2011; 83 (22): 8604–8610. doi: 10.1021/ac202028g.

19. Pinheiro LB, Coleman VA, Hindson CM et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 2012; 84 (2): 1003–1011. doi: 10.1021/ac202578x.

20. RainDance Digital PCR Reagents and Consumables. Life Science Research | Bio-Rad. [online]. Available from: https: //www.bio­-rad.com/en-dk/product/raindance-digital-pcr-reagents-consumables?ID=Q8L21TE08O1Y.

21. Droplet DigitalTM PCR (ddPCRTM) Technology | LSR | Bio-Rad. [online]. Available from: https: //www.bio­-rad.com/en-dk/applications-technologies/droplet-digital-pcr-ddpcr-technology?ID=MDV31M4VY.

22. Diehl F, Li M, He Y et al. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods 2006; 3 (7): 551–559. doi: 10.1038/nmeth898.

23. BEAMing Technology Overview | OncoBEAMTM. [online]. Available from: https: //www.oncobeam.com/oncobeam-technology/technology-overview.

24. Sensitivity, specificity and limit of detection in dPCR BIO-RAD2016. [online]. Available from: https: //www.bio­-rad.com/en-dk/category/genomics?ID=2d11dcf8-2dbe-47a5-a1de-8315abd3c17e.

25. Slutsky B. Handbook of chemometrics and qualimetrics: part A. In: Massart DL, Vandeginste BG, Buydens LM et al. Data handling in science and technology, vol. 20A. Amsterdam: Elsevier 1997: Xvii + 867.

26. Strain MC, Lada SM, Luong T et al. Highly precise measurement of HIV DNA by droplet digital PCR. PloS One 2013; 8 (4): e55943. doi: 10.1371/journal.pone.0055943.

27. Maheshwari Y, Selvaraj V, Hajeri S et al. Application of droplet digital PCR for quantitative detection of Spiroplasma citri in comparison with real time PCR. PLOS One 2017; 12 (9): e0184751. doi: 10.1371/journal.pone.0184751.

28. Suo T, Liu X, Feng J et al. ddPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerg Microbes Infect 2020; 9 (1): 1259–1268. doi: 10.1080/22221751.2020.1772678.

29. Hudecova I, Jiang P, Davies J et al. Noninvasive detection of F8 int22h-related inversions and sequence variants in maternal plasma of hemophilia carriers. Blood 2017; 130 (3): 340–347. doi: 10.1182/blood-2016-12-755017.

30. Camunas-Soler J, Lee H, Hudgins L et al. Noninvasive prenatal dia­gnosis of single-gene disorders by use of droplet digital PCR. Clin Chem 2018; 64 (2): 336–345. doi: 10.1373/clinchem.2017.278101.

31. Kinugasa H, Nouso K, Tanaka T et al. Droplet digital PCR measurement of HER2 in patients with gastric cancer. Br J Cancer 2015; 112 (10): 1652–1625. doi: 10.1038/bjc.2015.129.

32. Malicherova B, Burjanivova T, Grendar M et al. Droplet digital PCR for detection of BRAF V600E mutation in formalin-fixed, paraffin-embedded melanoma tissues: a comparison with Cobas® 4800, Sanger sequencing, and allele-specific PCR. Am J Transl Res 2018; 10 (11):  3773–3781.

33. Vanova B, Kalman M, Jasek K et al. Droplet digital PCR revealed high concordance between primary tumors and lymph node metastases in multiplex screening of KRAS mutations in colorectal cancer. Clin Exp Med 2019; 19 (2): 219–224. doi: 10.1007/s10238-019-00545-y.

34. Li H, Bai R, Zhao Z et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci Rep 2018; 38 (6): BSR20181170. doi: 10.1042/BSR20181170.

35. Mu D, Yan L, Tang H et al. A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular DNA by the application of a droplet digital polymerase chain reaction amplification system. Biotechnol Lett 2015; 37 (10): 2063–2073. doi: 10.1007/s10529-015-1890-5.

36. Yang J, Han X, Liu A et al. Use of digital droplet PCR to detect mycobacterium tuberculosis DNA in whole blood-derived DNA samples from patients with pulmonary and extrapulmonary tuberculosis. Front Cell Infect Microbio­l 2017; 7: 369. doi: 10.3389/fcimb.2017.00369.

37. Koepfli C, Nguitragool W, Hofmann NE et al. Sensitive and accurate quantification of human malaria parasites using droplet digital PCR (ddPCR). Sci Rep 2016; 16 (6): 39183.

38. Mujezinovic F, Alfirevic Z. Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Obstet Gynecol 2007; 110 (3): 687–694. doi: 10.1097/01.AOG.0000278820.54029.e3.

39. Lun FMF, Tsui NBY, Chan KCA et al. Noninvasive prenatal dia­gnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc Natl Acad Sci USA 2008; 105 (50): 19920–19925. doi: 10.1073/pnas.0810373105.

40. Tsui NBY, Kadir RA, Chan KCA et al. Noninvasive prenatal dia­gnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA. Blood 2011; 117 (13): 3684–3691. doi: 10.1182/blood-2010-10-310789.

41. Barrett AN, McDonnell TCR, Chan KCA et al. Digital PCR analysis of maternal plasma for noninvasive detection of sickle cell anemia. Clin Chem 2012; 58 (6): 1026–1032.

42. El Khattabi LA, Rouillac-Le Sciellour C, Le Tessier D et al. Could digital PCR be an alternative as a non-invasive prenatal test for trisomy 21: a proof of concept study. PLoS One 2016; 11 (5): e0155009. doi: 10.1371/journal.pone.0155009.

43. D’Aversa E, Breveglieri G, Pellegatti P et al. Non-invasive fetal sex dia­gnosis in plasma of early weeks pregnants using droplet digital PCR. Mol Med 2018; 24 (1): 14.

44. O’Brien H, Hyland C, Schoeman E et al. Non-invasive prenatal testing (NIPT) for fetal Kell, Duffy and Rh blood group antigen prediction in alloimmunised pregnant women: power of droplet digital PCR. Br J Haematol 2020; 189 (3): e90–e94. doi: 10.1111/bjh.16500.

45. Mazaika E, Homsy J. Digital droplet PCR: CNV analysis and other applications. Curr Protoc Hum Genet 2014; 82: 7.24.1–13. doi: 10.1002/0471142905.hg0724s82.

46. Van Wesenbeeck L, Janssens L, Meeuws H et al. Droplet digital PCR is an accurate method to assess methylation status on FFPE samples. Epigenetics 2018; 13 (3):   207–213. doi: 10.1080/15592294.2018.1448679.

47. Kinugasa H, Nouso K, Miyahara K et al. Detection of K-ras gene mutation by liquid bio­psy in patients with pancreatic cancer. Cancer. 2015; 121 (13): 2271–2280. doi: 10.1002/cncr.29364.

48. Hughesman CB, Lu XJD, Liu KYP et al. Detection of clinically relevant copy number alterations in oral cancer progression using multiplexed droplet digital PCR. Sci Rep 2017; 7 (1): 11855. doi: 10.1038/s41598-017-11201-4.

49. Shlien A, Malkin D. Copy number variations and cancer. Genome Med 2009; 1 (6): 62.

50. Liu YJ, Shen D, Yin X et al. HER2, MET and FGFR2 oncogenic driver alterations define distinct molecular segments for targeted therapies in gastric carcinoma. Br J Cancer 2014; 110 (5): 1169–1178. doi: 10.1038/bjc.2014.61.

51. Zhang Y, Tang E-T, Du Z. Detection of MET gene copy number in cancer samples using the droplet digital PCR method. PloS One 2016; 11 (1): e0146784. doi: 10.1371/journal.pone.0146784.

52. Lewandowska J, Bartoszek A. DNA methylation in cancer development, dia­gnosis and therapy--multiple opportunities for genotoxic agents to act as methylome disruptors or remediators. Mutagenesis 2011; 26 (4): 475–487. doi: 10.1093/mutage/ger019.

53. Koch A, Joosten SC, Feng Z et al. Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol 2018; 15 (7): 459–466. doi: 10.1038/s41571-018-0004-4.

54. Hayashi M, Guerrero-Preston R, Sidransky D et al. PAX5 methylation detection by droplet digital PCR for ultra-sensitive deep surgical margins analysis of head and neck squamous cell carcinoma. Cancer Prev Res (Phila) 2015; 8 (11): 1017–1026. doi: 10.1158/1940-6207.CAPR-15-0180.

55. Menschikowski M, Jandeck C, Friedemann M et al. Identification of rare levels of methylated tumor DNA fragments using an optimized bias based pre-amplification-digital droplet PCR (OBBPA-ddPCR). Oncotarget 2018; 9 (90): 36137–36150. doi: 10.18632/oncotarget.26315.

56. Chibon F. Cancer gene expression signatures – the rise and fall? Eur J Cancer Oxf Engl (1990) 2013; 49 (8): 2000–2009. doi: 10.1016/j.ejca.2013.02.021.

57. Rapin N, Bagger FO, Jendholm J et al. Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients. Blood 2014; 123 (6): 894–904. doi: 10.1182/blood-2013-02-485771.

58. Yan M, Schwaederle M, Arguello D et al. HER2 expression status in diverse cancers: review of results from 37,992 patients. Cancer Metastasis Rev 2015; 34 (1): 157–164. doi: 10.1007/s10555-015-9552-6.

59. Wang Q, Jia P, Li F et al. Detecting somatic point mutations in cancer genome sequencing data: a comparison of mutation callers. Genome Med 2013; 5 (10): 91. doi: 10.1186/gm495.

60. Milbury CA, Zhong Q, Lin J et al. Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. Biomol Detect Quantif 2014; 1 (1): 8–22. doi: 10.1016/j.bdq.2014.08.001.

61. Decraene C, Silveira AB, Bidard F-C et al. Multiple hotspot mutations scanning by single droplet digital PCR. Clin Chem 2018; 64 (2): 317–328. doi: 10.1373/clinchem.2017.272518.

62. Denis JA, Patroni A, Guillerm E et al. Droplet digital PCR of circulating tumor cells from colorectal cancer patients can predict KRAS mutations before surgery. Mol Oncol 2016; 10 (8): 1221–1231. doi: 10.1016/j.molonc.2016.05.009.

63. Burjanivova T, Malicherova B, Grendar M et al. Detection of BRAFV600E mutation in melanoma patients by digital PCR of circulating DNA. Genet Test Mol Biomark 2019; 23 (4): 241–245. doi: 10.1089/gtmb.2018. 0193.

64. Murray NP. Biomarkers detecting minimal residual disease in solid tumors: what do they mean in the clinical management of patients? Biomark Med 2019; 13 (18): 1535–1538. doi: 10.2217/bmm-2019-0401.

65. Drandi D, Kubiczkova-Besse L, Ferrero S et al. Minimal residual disease detection by droplet digital PCR in multiple myeloma, mantle cell lymphoma, and follicular lymphoma: a comparison with real-time PCR. J Mol Dia­gn JMD 2015; 17 (6): 652–660. doi: 10.1016/j.jmoldx.2015.05.007.

66. Dudová S, Hájek R. Využití metody real-time PCR (kvantitativní PCR, PCR v reálném čase) v hematologii a studiu mnohočetného myelomu. Klin Onkol 2018; 21 (Suppl 1):  220–222.

67. Chin R-I, Chen K, Usmani A et al. Detection of solid tumor molecular residual disease (MRD) using circulating tumor DNA (ctDNA). Mol Dia­gn Ther 2019; 23 (3): 311–331. doi: 10.1007/s40291-019-00390-5.

68. Taniguchi K, Uchida J, Nishino K et al. Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res Off J Am Assoc Cancer Res 2011; 17 (24): 7808–7815. doi: 10.1158/1078-0432.CCR-11-1712.

69. Taly V, Pekin D, Benhaim L et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem 2013; 59 (12): 1722–1731. doi: 10.1373/clinchem.2013.206359.

70. Garcia-Murillas I, Schiavon G, Weigelt B et al. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med 2015; 7 (302): 302ra133. doi: 10.1126/scitranslmed.aab0021.

71. Sausen M, Phallen J, Adleff V et al. Clinical implications of genomic alterations in the tumour and circulation of pancreatic cancer patients. Nat Commun 2015; 6: 7686. doi: 10.1038/ncomms8686.

72. Birkenkamp-Demtröder K, Nordentoft I, Christensen E et al. Genomic alterations in liquid bio­psies from patients with bladder cancer. Eur Urol 2016; 70 (1): 75–82. doi: 10.1016/j.eururo.2016.01.007.

Štítky
Dětská onkologie Chirurgie všeobecná Onkologie

Článek vyšel v časopise

Klinická onkologie

Číslo 1

2021 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Kardiologické projevy hypereozinofilií
nový kurz
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Role IL-5 v patogenezi zánětu typu 2
Autoři: MUDr. Jakub Novosad, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#