Kontrola kvality proteinů a kancerogeneze
Autoři:
F. Trcka; B. Vojtesek; P. Müller
Působiště autorů:
Regional Centre for Applied and Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
Vyšlo v časopise:
Klin Onkol 2012; 25(Supplementum 2): 38-44
Práce byla podpořena granty IGA MZ ČR NT/13794-4/2012, GAČR P206/12/G151 a Evropským fondem pro regionální rozvoj a státním rozpočtem České republiky (OP VaVpI – RECAMO, CZ.1.05/2.1.00/03.0101).
Autoři deklarují, že v souvislosti s předmětem studie nemají žádné komerční zájmy.
Redakční rada potvrzuje, že rukopis práce splnil ICMJE kritéria pro publikace zasílané do bi omedicínských časopisů.
Obdrženo: 2. 10. 2012
Přijato: 1. 11. 2012
Souhrn
V průběhu své syntézy i po jejím dokončení jsou buněčné proteiny vystavovány vnějším i vnitřním faktorům způsobujícím jejich poškození. Nefunkční či nesprávně složené proteiny představují přímé fyziologické riziko pro vysoce komplexní buněčné prostředí a musejí být efektivně odstraňovány. U eukaryotních buněk se vyvinulo několik mechanizmů kontroly proteinové kvality zajišťujících proteinovou homeostázu. Významnou roli hrají tyto mechanizmy v nádorových buňkách, u nichž genetická nestabilita spolu s nepříznivým prostředím nádorové tkáně vede ke zvýšené produkci poškozených nebo deregulovaných proteinů. Kontrola kvality proteinů zahrnující rovněž degradaci nádorových supresorů a onkoproteinů tak představuje důležitý proces provázející vznik a vývoj nádoru. V tomto souhrnném článku se zaměřujeme na popis tří hlavních buněčných mechanizmů kontroly kvality proteinů se zvláštním ohledem na jejich úlohu v kancerogenezi.
Klíčová slova:
kontrola kvality proteinů – ubikvitinace – endoplasmatické retikulum – autofagie
Zdroje
1. Adams J. The proteasome: a suitable antineoplastic target. Nat Rev Cancer 2004; 4(5): 349–360.
2. Peters JM, Cejka Z, Harris JR et al. Structural features of the 26 S proteasome complex. J Mol Biol 1993; 234(4): 932–937.
3. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70: 503–533.
4. Nalepa G, Rolfe M, Harper JW. Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov 2006; 5(7): 596–613.
5. Kruse JP, Gu W. Modes of p53 regulation. Cell 2009; 137(4): 609–622.
6. de Rozieres S, Maya R, Oren M et al. The loss of mdm2 induces p53-mediated apoptosis. Oncogene 2000; 19(13): 1691–1697.
7. Iwakuma T, Lozano G. MDM2, an introduction. Mol Cancer Res 2003; 1(14): 993–1000.
8. Allende-Vega N, Saville MK. Targeting the ubiquitin-proteasome system to activate wild-type p53 for cancer therapy. Semin Cancer Biol 2010; 20(1): 29–39.
9. Cheok CF, Dey A, Lane DP. Cyclin-dependent kinase inhibitors sensitize tumor cells to nutlin-induced apoptosis: a potent drug combination. Mol Cancer Res 2007; 5(11): 1133–1145.
10. Tovar C, Rosinski J, Filipovic Z et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci U S A 2006; 103(6): 1888–1893.
11. Canner JA, Sobo M, Ball S et al. MI-63: a novel small--molecule inhibitor targets MDM2 and induces apoptosis in embryonal and alveolar rhabdomyosarcoma cells with wild-type p53. Br J Cancer 2009; 101(5): 774–781.
12. Issaeva N, Bozko P, Enge M et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med 2004; 10(12): 1321–1328.
13. Maxwell PH, Wiesener MS, Chang GW et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399(6733): 271–275.
14. Hoeller D, Dikic I. Targeting the ubiquitin system in cancer therapy. Nature 2009; 458(7237): 438–444.
15. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol 2004; 22(24): 4991–5004.
16. Yu X, Fu S, Lai M et al. BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev 2006; 20(13): 1721–1726.
17. Ford D, Easton DF, Stratton M et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet 1998; 62(3): 676–689.
18. Boulton SJ. BRCA1-mediated ubiquitylation. Cell Cycle 2006; 5(14): 1481–1486.
19. Loda M, Cukor B, Tam SW et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 1997; 3(2): 231–234.
20. Li B, Dou QP. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci U S A 2000; 97(8): 3850–3855.
21. Kumatori A, Tanaka K, Inamura N et al. Abnormally high expression of proteasomes in human leukemic cells. Proc Natl Acad Sci U S A 1990; 87(18): 7071–7075.
22. Chen W, Lee J, Cho SY et al. Proteasome-mediated destruction of the cyclin a/cyclin-dependent kinase 2 complex suppresses tumor cell growth in vitro and in vivo. Cancer Res 2004; 64(11): 3949–3957.
23. Blagosklonny MV. P53: an ubiquitous target of anticancer drugs. Int J Cancer 2002; 98(2): 161–166.
24. Kalejta RF, Shenk T. Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc Natl Acad Sci U S A 2003; 100(6): 3263–3268.
25. Kane RC, Farrell AT, Sridhara R et al. United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 2006; 12(10): 2955–2960.
26. Adams J, Palombella VJ, Sausville EA et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 1999; 59(11): 2615–2622.
27. Engel RH, Brown JA, Von Roenn JH et al. A phase II study of single agent bortezomib in patients with metastatic breast cancer: a single institution experience. Cancer Invest 2007; 25(8): 733–737.
28. Khan RZ, Badros A. Role of carfilzomib in the treatment of multiple myeloma. Expert Rev Hematol 2012; 5(4): 361–372.
29. Dorsey BD, Iqbal M, Chatterjee S et al. Discovery of a potent, selective, and orally active proteasome inhibitor for the treatment of cancer. J Med Chem 2008; 51(4): 1068–1072.
30. Piva R, Ruggeri B, Williams M et al. CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood 2008; 111(5): 2765–2775.
31. Ahner A, Brodsky JL. Checkpoints in ER-associated degradation: excuse me, which way to the proteasome? Trends Cell Biol 2004; 14(9): 474–478.
32. Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003; 4(3): 181–191.
33. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8(7): 519–529.
34. Molinari M, Eriksson KK, Calanca V et al. Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol Cell 2004; 13(1): 125–135.
35. Helenius A, Aebi M. Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 2004; 73: 1019–1049.
36. Parodi AJ. Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells. Biochim Biophys Acta 1999; 1426(2): 287–295.
37. Fang S, Ferrone M, Yang C et al. The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum. Proc Natl Acad Sci U S A 2001; 98(25): 14422–14427.
38. Chen B, Mariano J, Tsai YC et al. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc Natl Acad Sci U S A 2006; 103(2): 341–346.
39. Tsai YC, Mendoza A, Mariano JM et al. The ubiquitin ligase gp78 promotes sarcoma metastasis by targeting KAI1 for degradation. Nat Med 2007; 13(12): 1504–1509.
40. Kikkert M, Doolman R, Dai M et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from the endoplasmic reticulum. J Biol Chem 2004; 279(5): 3525–3534.
41. Ballar P, Ors AU, Yang H et al. Differential regulation of CFTRDeltaF508 degradation by ubiquitin ligases gp78 and Hrd1. Int J Biochem Cell Biol 2010; 42(1): 167–173.
42. Shmueli A, Tsai YC, Yang M et al. Targeting of gp78 for ubiquitin-mediated proteasomal degradation by Hrd1: cross-talk between E3s in the endoplasmic reticulum. Biochem Biophys Res Commun 2009; 390(3): 758–762.
43. Yamasaki S, Yagishita N, Sasaki T et al. Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‚Synoviolin‘. EMBO J 2007; 26(1): 113–122.
44. Gemmill RM, West JD, Boldog F et al. The hereditary renal cell carcinoma 3;8 translocation fuses FHIT to a patched-related gene, TRC8. Proc Natl Acad Sci U S A 1998; 95(16): 9572–9577.
45. Brauweiler A, Lorick KL, Lee JP et al. RING-dependent tumor suppression and G2/M arrest induced by the TRC8 hereditary kidney cancer gene. Oncogene 2007; 26(16): 2263–2271.
46. Faitova J, Krekac D, Hrstka R et al. Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett 2006; 11(4): 488–505.
47. Shen J, Chen X, Hendershot L et al. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 2002; 3(1): 99–111.
48. Calfon M, Zeng H, Urano F et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 2002; 415(6867): 92–96.
49. Hollien J, Lin JH, Li H et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 2009; 186(3): 323–331.
50. Yang W, Tiffany-Castiglioni E, Koh HC et al. Paraquat activates the IRE1/ASK1/JNK cascade associated with apoptosis in human neuroblastoma SH-SY5Y cells. Toxicol Lett 2009; 191(2–3): 203–210.
51. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999; 397(6716): 271–274.
52. Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 2004; 101(31): 11269–11274.
53. Harding HP, Zhang Y, Zeng H et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 2003; 11(3): 619–633.
54. McCullough KD, Martindale JL, Klotz LO et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 2001; 21(4): 1249–1259.
55. Ye J, Rawson RB, Komuro R et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 2000; 6(6): 1355–1364.
56. Yamamoto K, Sato T, Matsui T et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1. Dev Cell 2007; 13(3): 365–376.
57. Romero-Ramirez L, Cao H, Nelson D et al. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 2004; 64(17): 5943–5947.
58. Liu Y, Adachi M, Zhao S et al. Preventing oxidative stress: a new role for XBP1. Cell Death Differ 2009; 16(6): 847–857.
59. Spiotto MT, Banh A, Papandreou I et al. Imaging the unfolded protein response in primary tumors reveals microenvironments with metabolic variations that predict tumor growth. Cancer Res 2010; 70(1): 78–88.
60. Blais JD, Addison CL, Edge R et al. Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 2006; 26(24): 9517–9532.
61. Cullinan SB, Diehl JA. PERK-dependent activation of Nrf2 contributes to redox homeostasis and cell survival following endoplasmic reticulum stress. J Biol Chem 2004; 279(19): 20108–20117.
62. Itoh K, Chiba T, Takahashi S et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 1997; 236(2): 313–322.
63. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol 2010; 12(9): 814–822.
64. Mizushima N. Autophagy: process and function. Genes Dev 2007; 21(22): 2861–2873.
65. Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 2011; 7(7): 673–682.
66. Dice JF. Chaperone-mediated autophagy. Autophagy 2007; 3(4): 295–299.
67. Weidberg H, Shvets E, Elazar Z. Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem 2011; 80: 125–156.
68. Tanida I. Autophagy basics. Microbiol Immunol 2011; 55(1): 1–11.
69. Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 2010; 22(2): 132–139.
70. Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011; 7(3): 279–296.
71. Yao TP. The role of ubiquitin in autophagy-dependent protein aggregate processing. Genes Cancer 2010; 1(7): 779–786.
72. Burman C, Ktistakis NT. Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett 2010; 584(7): 1302–1312.
73. Ogier-Denis E, Couvineau A, Maoret JJ et al. A heterotrimeric Gi3-protein controls autophagic sequestration in the human colon cancer cell line HT-29. J Biol Chem 1995; 270(1): 13–16.
74. He C, Levine B. The Beclin 1 interactome. Curr Opin Cell Biol 2010; 22(2): 140–149.
75. Mehrpour M, Esclatine A, Beau I et al. Overview of macroautophagy regulation in mammalian cells. Cell Res 2010; 20(7): 748–762.
76. Alexander A, Cai SL, Kim J et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A 2010; 107(9): 4153–4158.
77. Diaz-Troya S, Perez-Perez ME, Florencio FJ et al. The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 2008; 4(7): 851–865.
78. Shacka JJ, Klocke BJ, Roth KA. Autophagy, bafilomycin and cell death: the „a-B-cs“ of plecomacrolide-induced neuroprotection. Autophagy 2006; 2(3): 228–230.
79. Schoenlein PV, Periyasamy-Thandavan S, Samaddar JS et al. Autophagy facilitates the progression of ERalpha-positive breast cancer cells to antiestrogen resistance. Autophagy 2009; 5(3): 400–403.
80. Levy JM, Thorburn A. Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol Ther 2011; 131(1): 130–141.
81. Mathew R, Karp CM, Beaudoin B et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009; 137(6): 1062–1075.
82. Qu X, Yu J, Bhagat G et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112(12): 1809–1820.
83. Liang XH, Jackson S, Seaman M et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402(6762): 672–676.
84. Apel A, Herr I, Schwarz H et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 2008; 68(5): 1485–1494.
85. Nicholson KM, Anderson NG. The protein kinase B//Akt signalling pathway in human malignancy. Cell Signal 2002; 14(5): 381–395.
86. Maiuri MC, Malik SA, Morselli E et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 2009; 8(10): 1571–1576.
87. Tasdemir E, Maiuri MC, Galluzzi L et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 2008; 10(6): 676–687.
88. Livesey KM, Kang R, Vernon P et al. p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res 2012; 72(8): 1996–2005.
89. Maiuri MC, Galluzzi L, Morselli E et al. Autophagy regulation by p53. Curr Opin Cell Biol 2010; 22(2): 181–185.
90. Rosenfeldt MT, Ryan KM. The multiple roles of autophagy in cancer. Carcinogenesis 2011; 32(7): 955–963.
Štítky
Dětská onkologie Chirurgie všeobecná OnkologieČlánek vyšel v časopise
Klinická onkologie
2012 Číslo Supplementum 2
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Prof. Petra Tesařová: Pacientky s metastatickým karcinomem nemají čas čekat na výsledky zdlouhavých byrokratických procedur
- Cinitaprid – nové bezpečné prokinetikum s odlišným mechanismem účinku
- Cinitaprid v léčbě funkční dyspepsie – přehled a metaanalýza aktuálních dat
Nejčtenější v tomto čísle
- p63 – důležitý hráč ve vývoji epidermálních struktur a nádorových onemocnění
- Zvýšený počet NKT-like buněk u pacientů se solidními nádory
- Role molekulárních chaperonů a ko-chaperonů v biologii nádorů
- Fáze I klinických studií v onkologii – teorie a praxe