#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Účinek ketaminu, antagonisty NMDA-receptoru, na žaludeční myoelektrickou aktivitu experimentálních prasat


Autoři: J. Bureš 1,2,3 ;  J. Květina 1 ;  V. Radochová 4 ;  Miroslav Zavoral 2,3 ;  Štěpán Suchánek 2,3 ;  S. Rejchrt 5 ;  M. Vališ 6 ;  Knoblochova V. 1;  J. Žďárová Karasová 1,7 ;  Soukup O. 1;  D. Kohoutová 1,8
Působiště autorů: Biomedical Research Centre, University Hospital Hradec Králové 1;  Institute of Gastrointestinal Oncology, Military University Hospital Praha 2;  Department of Medicine, Charles University, First Faculty of Medicine, Praha and Military University Hospital Praha 3;  Animal Laboratory, University of Defence, Faculty of Military Health Sciences, Hradec Králové 4;  2nd Department of Internal Medicine – Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové 5;  Department of Neurology, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové 6;  Department of Toxicology and Military Pharmacy, University of Defence, Faculty of Military Health Sciences, Hradec Králové 7;  The Royal Marsden NHS Foundation Trust, London 8
Vyšlo v časopise: Gastroent Hepatol 2022; 76(4): 309-318
Kategorie: Klinická a experimentální gastroenterologie: původní práce
doi: https://doi.org/10.48095/ccgh2022309

Souhrn

Úvod: Téměř všechny preklinické studie u experimentálních prasat je třeba provádět v celkové anestezii. Ketamin je běžně používán jako úvod do anestezie. Avšak dosud nezodpovězenou otázkou je, zda ketamin, antagonista NMDA-receptorů, ovlivňuje motorické funkce žaludku. Cílem této práce bylo vyšetřit žaludeční myoelektrickou aktivitu prasete metodou elektrogastrografie (EGG). Metody: Do studie bylo zařazeno 17 samic Sus scrofa f. domestica (průměrná hmotnost 36,2 ± 3,8 kg). Pro úvod do anestezie byla použita různá léčiva: skupina A (n = 5): medetomidin 0,1 mg/kg i. m.; butorfanol 0,3 mg/kg i. m.; midazolam 0,3 mg/kg i. m.; skupina B (n = 6): azaperon 2,2 mg/kg i. m.; skupina C (n = 6): ketamin 20 mg/kg i. m.; azaperon 2,2 mg/kg i. m. Celková anestezie ve všech skupinách pokračovala podáváním 1% propofolu (opakované 1ml bolusy, celkem 10–12 ml i.v.). Záznam EGG začal za 15 min. po úvodu do anestezie a trval 30 min. Výsledky byly vyhodnoceny jako dominantní frekvence pomalých žaludečních vln (DF) a plochy pod křivkou (EGG power). Výsledky: Celkem bylo vyhodnoceno 510 jednominutových EGG intervalů (každý dvakrát: DF a power). DF byly (průměr ± směrodatná odchylka): 1,4 ± 0,4 (skupina A), 1,3 ± 0,3 (skupina B) a 0,2 ± 0,1 cykly/min. (skupina C). Rozdíly mezi skupinou C a skupinami A a B byly statisticky významné (p < 0,001). Mediány ploch pod křivkou (IQR) byly: 0,13 (0,02–0,44; skupina A); 0,13 (0,03–0,54; skupina B) a 0,30 V2 (0,07–1,44; skupina C). Rozdíl mezi skupinami A a C byl na hranici statistické významnosti (p = 0,066; chyba 2. typu beta 0,295). Závěry: Ketamin, a to i v jedné intramuskulární dávce, ovlivňuje myoelektrické funkce žaludku prasete. Proto by neměl být používán v preklinických studiích gastrointestinální motility experimentálních prasat.

Klíčová slova:

elektrogastrografie – ketamin – antagonista receptorů NMDA (N-metyl-D-aspartát) – myoelektrická aktivita žaludku – experimentální prase


Zdroje

1. Said H (ed). Physiology of the Gastrointestinal Tract. 6th ed. London: Academic Press 2018.

2. Gürlich R, Maruna P, Frasko R. Transcutaneous electrogastrography in the perioperative period in patients undergoing laparoscopic cholecystectomy and laparoscopic non-adjustable gastric banding. Obes Surg 2003; 13 (5): 714–720. doi: 10.1381/096089203322509273.

3. Pozler O, Neumann D, Vorisek V et al. Development of gastric emptying in premature infants. Use of the 13C-octanoic acid breath test. Nutrition 2003; 19 (7–8): 593–596. doi: 10.1016/S0899-9007 (03) 00064-9.

4. Sýkora J, Malán A, Záhlava J et al. Gastric emptying of solids in children with H. pylori-positive and H. pylori-negative non-ulcer dyspepsia. J Pediatr Gastroenterol Nutr 2004; 39 (3): 246–252. doi: 10.1097/00005176-200409000-00004.

5. Bureš J, Kopáčová M, Voříšek V et al. Examination of gastric emptying rate by means of 13C-octanoic acid breath test. Methods of the test for adults and results of the investigation of healthy volunteers [in Czech]. Cas Lek ces 2005; 144 (Suppl 3): 18–22.

6. Kojecky V, Bernatek J, Horowitz M et al. Prevalence and determinants of delayed gastric emptying in hospitalised Type 2 diabetic patients. World J Gastroenterol 2008; 14 (10): 1564–1569. doi: 10.3748/wjg.14.1564.

7. Frasko R, Maruna P, Gurlich R, Trca S. Transcutaneous electrogastrography in patients with ileus. Relations to interleukin-1beta, interleukin-6, procalcitonin and C-reactive protein. Eur Surg Res 2008; 41 (2): 197–202. doi: 10.1159/000134918.

8. Maruna P, Frasko R, Lindner J. Disturbances of gastric electrical control activity after laparotomic cholecystectomy are related to interleukin-6 concentrations. Eur Surg Res 2009; 43 (4): 317–324. doi: 10.1159/000235569.

9. O‘Grady G, Angeli TR, Du P et al. Abnormal initiation and conduction of slow-wave activity in gastroparesis, defined by high-resolution electrical mapping. Gastroenterology 2012; 143 (3): 589–598.e3. doi: 10.1053/j.gastro.2012.05.036.

10. Michalsky D, Dvorak P, Belacek J et al. Radical resection of the pyloric antrum and its effect on gastric emptying after sleeve gastrectomy. Obes Surg 2013; 23 (4): 567–573. doi: 10.1007/s11695-012-0850-6.

11. O‘Grady G, Abell TL. Gastric arrhythmias in gastroparesis: low- and high-resolution mapping of gastric electrical activity. Gastroenterol Clin North Am 2015; 44 (1): 169–184. doi: 10.1016/j.gtc.2014.11.013.

12. Carlson DA, Kahrilas PJ, Lin Z et al. Evaluation of Esophageal Motility Utilizing the Functional Lumen Imaging Probe. Am J Gastroenterol 2016; 111 (12): 1726–1735.

13. Hajer J, Novák M. Development of an Autonomous Endoscopically Implantable Submucosal Microdevice Capable of Neurostimulation in the Gastrointestinal Tract. Gastroenterol Res Pract 2017; 2017: 8098067. doi: 10.1155/ 2017/8098067.

14. Gharibans AA, Coleman TP, Mousa H et al. Spatial Patterns From High-Resolution Electrogastrography Correlate With Severity of Symptoms in Patients With Functional Dyspepsia and Gastroparesis. Clin Gastroenterol Hepatol 2019; 17 (13): 2668–2677. doi: 10.1016/j.cgh.2019.04.039.

15. Sangnes DA, Søfteland E, Bekkelund M et al. Wireless motility capsule compared with scintigraphy in the assessment of diabetic gastroparesis. Neurogastroenterol Motil 2020; 32 (4): e13771. doi: 10.1111/nmo.13771.

16. Weusten BLAM, Barret M, Bredenoord AJ et al. Endoscopic management of gastrointestinal motility disorders – part 1: European Society of Gastrointestinal Endoscopy (ESGE) Guideline. Endoscopy 2020; 52 (6): 498–515. doi: 10.1055/a-1160-5549.

17. Balihar K, Kotyza J, Zdrhova L et al. Characterization of esophageal motor activity, gastroesophageal reflux, and evaluation of prokinetic effectiveness in mechanically ventilated critically ill patients: a high-resolution impedance manometry study. Crit Care 2021; 25 (1): 54. doi: 10.1186/s13054-021-03479-8.

18. Carson DA, O‘Grady G, Du P et al. Body surface mapping of the stomach: New directions for clinically evaluating gastric electrical activity. Neurogastroenterol Motil 2021; 33 (3): e14048. doi: 10.1111/nmo.14048.

19. O‘Grady G, Gharibans A, Calder S et al. Retrograde slow-wave activation: a missing link in gastric dysfunction? Neurogastroenterol Motil 2021; 33 (4): e14112. doi: 10.1111/nmo.14112.

20. Martinek R, Ladrova M, Sidikova M et al. Advanced Bioelectrical Signal Processing Methods: Past, Present, and Future Approach – Part III: Other Biosignals. Sensors (Basel) 2021; 21 (18): 6064. doi: 10.3390/s21186064.

21. McCallum RW, Parkman H, Clarke J et al. Gastroparesis. Pathophysiology, Clinical Presentation, Dia­gnosis and Treatment. London: Academic Press 2020.

22. Kamiya T, Fukuta H, Hagiwara H et al. Disturbed gastric motility in patients with long-standing diabetes mellitus. J Smooth Muscle Res 2022; 58 (0): 1–10. doi: 10.1540/jsmr.58.1.

23. Martinek J, Hustak R, Mares J et al. Endoscopic pyloromyotomy for the treatment of severe and refractory gastroparesis: a pilot, randomised, sham-controlled trial. Gut 2022; 326904. doi: 10.1136/gutjnl-2022-326904.

24. Chen JZ, McCallum RW (eds). Electrogastrography. Principles and Applications. New York: Raven Press 1994.

25. Koch KL, Stern RM. Handbook of Electrogastrography. Oxford: Oxford University Press 2003. doi: 10.1093/oso/9780195147889.001.0001

26. Parkman HP, Hasler WL, Barnett JL et al. Electrogastrography: a document prepared by the gastric section of the American Motility Society Clinical GI Motility Testing Task Force. Neurogastroenterol Motil 2003; 15 (2): 89–102. doi: 10.1046/j.1365-2982.2003.00396.x.

27. Bureš J, Kopáčová M, Voříšek V et al. Correlation of electrogastrography and gastric emptying rate estimated by 13C-octanoic acid breath test in healthy volunteers. Folia Gastroenterol Hepatol 2007; 5 (1): 5–11.

28. Bures J, Kabelác K, Kopácová M et al. Electrogastrography in patients with Roux-en-Y reconstruction after previous Billroth gastrectomy. Hepato-Gastroenterology 2008; 55 (85): 1492–1496.

29. Alvarez WC, Mahoney LJ. Action currents in stomach and intestine. Am J Physiol 1922; 58 (3): 476–493. doi: 10.1152/ajplegacy.1922.58.3. 476.

30. Mintchev MP, Otto SJ, Bowes KL. Electrogastrography can recognize gastric electrical uncoupling in dogs. Gastroenterology 1997; 112 (6): 2006–2011. doi: 10.1053/gast.1997.v112.pm9178693.

31. Andreis U, Américo MF, Corá LA et al. Gastric motility evaluated by electrogastrography and alternating current bio­­susceptometry in dogs. Physiol Meas 2008; 29 (9): 1023–1031. doi: 10.1088/0967-3334/29/9/002.

32. Koenig JB, Martin CEW, Dobson H et al. Use of multichannel electrogastrography for noninvasive assessment of gastric myoelectrical activity in dogs. Am J Vet Res 2009; 70 (1): 11–15. doi: 10.2460/ajvr.70.1.11.

33. Květina J, Edakkanambeth Varayil J, Ali SM et al. Preclinical electrogastrography in experimental pigs. Interdiscip Toxicol 2010; 3 (2): 53–58. doi: 10.2478/v10102-010-0011-5.

34. Bures J, Kvetina J, Pavlik M et al. Impact of paraoxon followed by acetylcholinesterase reactivator HI-6 on gastric myoelectric activity in experimental pigs. Neuro Endocrinol Lett 2013; 34 (2): 79–83.

35. Květina J, Tachecí I, Pavlík M et al. Use of electrogastrography in preclinical studies of cholinergic and anticholinergic agents in experimental pigs. Physiol Res 2015; 64 (5): S647–S652. doi: 10.33549/physiolres.933227.

36. Bureš J, Jun D, Hrabinová M et al. Impact of tacrine and 7-methoxytacrine on gastric myo­electrical activity assessed using electrogastro­graphy in experimental pigs. Neuro Endocrinol Lett 2015; 36 (1): 150–155.

37. Poscente MD, Mintchev MP. Enhanced electrogastrography: A realistic way to salvage a promise that was never kept? World J Gastroenterol 2017; 23 (25): 4517–4528. doi: 10.3748/wjg.v23.i25.4517.

38. Dallagnol DJR, Corá LA, Gama LA et al. Gastrointestinal Side Effects of Triple Immunosuppressive Therapy Evaluated by AC Biosusceptometry and Electrogastrography in Rats. Endocr Metab Immune Disord Drug Targets 2020; 20 (9): 1494–1503. doi: 10.2174/1871530320666200505111456.

39. Sukasem A, Calder S, Angeli-Gordon TR et al. In vivo experimental validation of detection of gastric slow waves using a flexible multichannel electrogastrography sensor linear array. Biomed Eng Online 2022; 21 (1): 43. doi: 10.1186/s12938-022-01010-w.

40. Bures J, Kvetina J, Tacheci I et al. The effect of different doses of atropine on gastric myoelectrical activity in fasting experimental pigs. J Appl Biomed 2015; 13 (4): 273–277. doi: 10.1016/ j.jab.2015.04.004.

41. Bureš J, Tachecí I, Květina J et al. Experimental electrogastrography [in Czech]. Gastroent Hepatol 2014; 68 (3): 237–242.

42. Suenderhauf C, Parrott N. A physiologically based pharmacokinetic model of the minipig: data compilation and model implementation. Pharm Res 2013; 30 (1): 1–15. doi: 10.1007/s11095-012-0911-5.

43. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and bio­­chemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 1995; 16 (5): 351–380. doi: 10.1002/bdd.2510160502.

44. Gonzalez LM, Moeser AJ, Blikslager AT. Porcine models of digestive disease: the future of large animal translational research. Transl Res 2015; 166 (1): 12–27. doi: 10.1016/ j.trsl.2015.01.004.

45. Tveden-Nyborg P, Bergmann TK, Lykkesfeldt J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol 2018; 123 (3): 233–235. doi: 10.1111/bcpt.13059.

46. Boschert K, Flecknell PA, Fosse RT et al. Keta­mine and its use in the pig. Recommendations of the Consensus meeting on Ketamine Anaesthesia in Pigs, Bergen 1994. Ketamine Consensus Working Group. Lab Anim 1996; 30 (3): 209–219. doi: 10.1258/002367796780684863

47. Pehböck D, Dietrich H, Klima G et al. Anesthesia in swine: optimizing a laboratory model to optimize translational research. Anaesthesist 2015; 64 (1): 65–70. doi: 10.1007/s00101-014-2371-2.

48. Nowacka A, Borczyk M. Ketamine applications beyond anesthesia – A literature review. Eur J Pharmacol 2019; 860: 172547. doi: 10.1016/j.ejphar.2019.172547.

49. Carlsen MF, Christoffersen BØ, Lindgaard R et al. Implantation of telemetric blood pressure transmitters in Göttingen Minipigs: Validation of 24-h systemic blood pressure and heart rate monitoring and influence of anaesthesia. J Pharmacol Toxicol Methods 2022; 115: 107168. doi: 10.1016/j.vascn.2022.107168.

50. Zanos P, Moaddel R, Morris PJ et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharmacol Rev 2018; 70 (3): 621–660. doi: 10.1124/ pr.117.015198.

51. Kurdi MS, Theerth KA, Deva RS. Ketamine: Current applications in anesthesia, pain, and critical care. Anesth Essays Res 2014; 8 (3): 283–290. doi: 10.4103/0259-1162.143110.

52. Persson J. Wherefore ketamine? Curr Opin Anaesthesiol 2010; 23 (4): 455–460. doi: 10.1097/ ACO.0b013e32833b49b3.

53. Bures J, Kvetina J, Radochova V et al. The pharmacokinetic parameters and the effect of a single and repeated doses of memantine on gastric myoelectric activity in experimental pigs. PLoS One 2020; 15 (1): e0227781. doi: 10.1371/journal.pone.0227781.

54. Explanatory Report on the European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes (ETS 123). Strasbourg: Council of Europe, 1986.

55. Wolff K, Winstock AR. Ketamine: from medicine to misuse. CNS Drugs 2006; 20 (3): 199–218. doi: 10.2165/00023210-200620030-00003.

56. Sinner B, Graf BM. Ketamine. Handb Exp Pharmacol 2008; (182): 313–333. doi: 10.1007/978-3- 540-74806-9_15.

57. White PF, Way WL, Trevor AJ. Ketamine: its pharmacology and therapeutic uses. Anesthesiology 1982; 56 (2): 119–136. doi: 10.1097/ 000 00542-198202000-00007.

58. Green SM, Nakamura R, Johnson NE. Keta­mine sedation for pediatric procedures: Part 1, A prospective series. Ann Emerg Med 1990; 19 (9): 1024–1032. doi: 10.1016/s0196-0644 (05) 82 568-5.

59. Cicero L, Fazzotta S, Palumbo VD et al. Anesthesia protocols in laboratory animals used for scientific purposes. Acta Biomed 2018; 89 (3): 337–342. doi: 10.23750/abm.v89i3.5824.

60. Schnoor J, Bartz S, Klosterhalfen B et al. A long-term porcine model for measurement of gastrointestinal motility. Lab Anim 2003; 37 (2): 145–154. doi: 10.1258/00236770360563796.

61. Schnoor J, Unger JK, Kochs B et al. Effects of a single dose of ketamine on duodenal motility activity in pigs. Can Vet J 2005; 46 (2): 147–152.

62. Linkenhoker JR, Burkholder TH, Linton CG et al. Effective and safe anesthesia for Yorkshire and Yucatan swine with and without cardiovascular injury and intervention. J Am Assoc Lab Anim Sci 2010; 49 (3): 344–351.

63. Healy TE, Foster GE, Evans DF et al. Effect of some i.v. anaesthetic agents on canine gastrointestinal motility. Br J Anaesth 1981; 53 (3): 229–233. doi: 10.1093/bja/53.3.229.

64. Shinozaki H, Gotoh Y, Ishida M. Selective N-methyl-D-aspartate (NMDA) antagonists increase gastric motility in the rat. Neurosci Lett 1990; 113 (1): 56–61. doi: 10.1016/0304-3940 (90) 90494-t.

65. Kounenis G, Koutsoviti-Papadopoulou M, Elezoglou V. Ketamine may modify intestinal motility by acting at GABAA-receptor complex; an in vitro study on the guinea pig intestine. Pharmacol Res 1995; 31 (6): 337–340. doi: 10.1016/1043-6618 (95) 80086-7.

66. Fass J, Bares R, Hermsdorf V et al. Effects of intravenous ketamine on gastrointestinal motility in the dog. Intensive Care Med 1995; 21 (7): 584–589.

67. Elfenbein JR, Robertson SA, Corser AA et al. Systemic effects of a prolonged continuous infusion of ketamine in healthy horses. J Vet Intern Med 2011; 25 (5): 1134–1137.

68. Bures J, Tacheci I, Kvetina J et al. The Impact of Dextran Sodium Sulfate-Induced Gastrointestinal Injury on the Pharmacokinetic Parameters of Donepezil and Its Active Metabolite 6-O-desmethyldonepezil, and Gastric Myoelectric Activity in Experimental Pigs. Molecules 2021; 26 (8): 2160. doi: 10.3390/molecules26082160.

69. Bures J, Tacheci I, Kvetina J et al. Dextran Sodium Sulphate-Induced Gastrointestinal Injury Further Aggravates the Impact of Galantamine on the Gastric Myoelectric Activity in Experimental Pigs. Pharmaceuticals (Basel) 2021; 14 (6): 590. 10.3390/ph14060590.

70. Gideons ES, Kavalali ET, Monteggia LM. Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci U S A 2014; 111 (23): 8649–8654. doi: 10.1073/pnas.1323920111.

71. Johnson JW, Glasgow NG, Povysheva NV. Recent insights into the mode of action of memantine and ketamine. Curr Opin Pharmacol 2015; 20: 54–63. doi: 10.1016/j.coph.2014.11.006.

72. Glasgow NG, Povysheva NV, Azofeifa AM et al. Memantine and Ketamine Differentially Alter NMDA Receptor Desensitization. J Neurosci 2017; 37 (40): 9686–9704. doi: 10.1523/JNEUROSCI. 1173-17.2017.

Štítky
Dětská gastroenterologie Gastroenterologie a hepatologie Chirurgie všeobecná

Článek vyšel v časopise

Gastroenterologie a hepatologie

Číslo 4

2022 Číslo 4
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#