In silico veritas? Potential limitations for SARS-CoV-2 vaccine development based on T-cell epitope prediction
Autoři:
Sandra Silva-Arrieta aff001; Philip J. R. Goulder aff002; Christian Brander aff001
Působiště autorů:
IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
aff001; Department of Paediatrics, University of Oxford, Oxford, United Kingdom
aff002; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
aff003; Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
aff004; University of Vic–Central University of Catalonia, Catalonia, Vic, Spain
aff005; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
aff006
Vyšlo v časopise:
In silico veritas? Potential limitations for SARS-CoV-2 vaccine development based on T-cell epitope prediction. PLoS Pathog 16(6): e32767. doi:10.1371/journal.ppat.1008607
Kategorie:
Opinion
doi:
https://doi.org/10.1371/journal.ppat.1008607
Zdroje
1. Falk K, Rötzschke O, Stevanovic S, Jung G, Rammensee HG. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991;351(6324):290–6.
2. Gotch F, Rothbard J, Howland K, Townsend A, McMichael A. Cytotoxic T lymphocytes recognize a fragment of influenza virus matrix protein in association with HLA-A2. Nature. 1987;326(6116):881–2.
3. Nixon DF, Townsend AR, Elvin JG, Rizza CR, Gallwey J, McMichael AJ. HIV-1 gag-specific cytotoxic T lymphocytes defined with recombinant vaccinia virus and synthetic peptides Nature. 1988;336(6198):484–7.
4. Brander C, Walker BD. The HLA-class I restricted CTL response in HIV-1 infection: Identification of optimal epitopes. In: Korber B, Brander C, Walker BD, Koup R, Moore J, Haynes B, Myers G, editors. HIV Molecular Immunology Database 1995. Los Alamos, NM: Los Alamos National Laboratory: Theoretical Biology and Biophysics; 1995. p. 1–9.
5. Llano A, Cedeño S, Silva-Arrieta S, Brander C. The 2019 Optimal HIV CTL epitopes update: Growing diversity in epitope length and HLA restriction. In: Yusim K, Korber BTM, Brander C, Barouch D, de Boer R, Haynes BF, Koup R, Moore JP, Walker BD, Watkins DI, editors. HIV Molecular Immunology 2018. Los Alamos, NM: Los Alamos National Laboratory, Theoretical Biology and Biophysics; 2019. p. 3–27.
6. Burrows SR, Rossjohn J, McCluskey J. Have we cut ourselves too short in mapping CTL epitopes? Trends Immunol. 2006;27:11–6.
7. Yaciuk JC, Skaley M, Bardet W, Schafer F, Mojsilovic D, Cate S, et al. Direct interrogation of viral peptides presented by the class I HLA of HIV-infected T cells. J Virol. 2014;88(22):12992–3004. doi: 10.1128/JVI.01914-14 25165114
8. Goulder PJ, Tang Y, Pelton SI, Walker BD. HLA-B57-restricted cytotoxic T-lymphocyte activity in a single infected subject toward two optimal epitopes, one of which is entirely contained within the other. J Virol. 2000;74(11):5291–9.
9. de Campos-Lima PO, Gavioli R, Zhang QJ, Wallace LE, Dolcetti R, Rowe M, et al. HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly A111 population. Science. 1993;260:98–100.
10. Gutiérrez MI, Spangler G, Kingma D, Raffeld M, Guerrero I, Misad O, et al. Epstein-Barr virus in nasal lymphomas contains multiple ongoing mutations in the EBNA-1 gene. Blood. 1998;92(2):600–6.
11. Sidney J, Peters B, Frahm N, Brander C, Sette A. HLA class I supertypes: a revised and updated classification. BMC Immunol. 2008;9:1. doi: 10.1186/1471-2172-9-1 18211710
12. Frahm N, Yusim K, Suscovich TJ, Adams S, Sidney J, Hraber P, et al. Extensive HLA class I allele promiscuity among viral CTL epitopes. Eur J Immunol. 2007;37(9):2419–33
13. Walters LC, Harlos K, Brackenridge S, Rozbesky D, Barrett JR, Jain V, et al. Pathogen-derived HLA-E bound epitopes reveal broad primary anchor pocket tolerability and conformationally malleable peptide binding. Nat Commun. 2018;9(1):3137. doi: 10.1038/s41467-018-05459-z 30087334
14. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest. 2020;130(5)2620–2629. doi: 10.1172/JCI137244 Epub 2020 Mar 27. 32217835
15. Friberg H, Beaumier CM, Park S, Pazoles P, Endy TP, Mathew A, et al. Protective versus pathologic pre-exposure cytokine profiles in dengue virus infection. PLoS Negl Trop Dis. 2018;12(12):e0006975. doi: 10.1371/journal.pntd.0006975 eCollection 2018 Dec. 30557313
16. Ruiz-Riol M, Llano A, Ibarrondo J, Zamarreño J, Yusim K, Bach V, et al. Alternative effector-function profiling identifies broad HIV-specific T-cell responses in highly HIV-exposed individuals who remain uninfected. J Infect Dis. 2015;211(6):936–46. doi: 10.1093/infdis/jiu534 Epub 2014 Sep 23. 25249264
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 6
- S diagnostikou Parkinsonovy nemoci může nově pomoci AI nástroj pro hodnocení mrkacího reflexu
- Proč při poslechu některé muziky prostě musíme tančit?
- Chůze do schodů pomáhá prodloužit život a vyhnout se srdečním chorobám
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- „Jednohubky“ z klinického výzkumu – 2024/44
Nejčtenější v tomto čísle
- Exploring potential of vaginal Lactobacillus isolates from South African women for enhancing treatment for bacterial vaginosis
- Microbiome factors in HPV-driven carcinogenesis and cancers
- Biological sex impacts COVID-19 outcomes
- Bacterial killing by complement requires direct anchoring of membrane attack complex precursor C5b-7