Cellular plasticity of pathogenic fungi during infection
Autoři:
Kenya E. Fernandes aff001; Dee A. Carter aff001
Působiště autorů:
School of Life and Environmental Sciences and the Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, Australia
aff001
Vyšlo v časopise:
Cellular plasticity of pathogenic fungi during infection. PLoS Pathog 16(6): e32767. doi:10.1371/journal.ppat.1008571
Kategorie:
Pearls
doi:
https://doi.org/10.1371/journal.ppat.1008571
Zdroje
1. Sil A, Andrianopoulos A. Thermally dimorphic human fungal pathogens—polyphyletic pathogens with a convergent pathogenicity trait. Cold Spring Harb Perspect Med. 2014;5(8): a019794. doi: 10.1101/cshperspect.a019794 PubMed Central PMCID: PMC4526722. 25384771
2. Sardi JC, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJ. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62(1): 10–24. doi: 10.1099/jmm.0.045054–0
3. Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017;15(2): 96–108. doi: 10.1038/nrmicro.2016.157 PubMed Central PMCID: PMC5957277. 27867199
4. Anderson J, Mihalik R, Soll DR. Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J Bacteriol. 1990;172(1): 224–35. doi: 10.1128/jb.172.1.224-235.1990 PubMed Central PMCID: PMC208422. 2403540
5. Bommanavar SB, Gugwad S, Malik N. Phenotypic switch: the enigmatic white-gray-opaque transition system of Candida albicans. J Oral Maxillofac Pathol. 2017;21(1): 82–6. doi: 10.4103/0973-029X.203781 PubMed Central PMCID: PMC5406825. 28479692
6. Kvaal C, Lachke SA, Srikantha T, Daniels K, McCoy J, Soll DR. Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infect Immun. 1999;67(12): 6652–62. 10569787
7. Tao L, Du H, Guan G, Dai Y, Nobile CJ, Liang W, et al. Discovery of a "white-gray-opaque" tristable phenotypic switching system in Candida albicans: roles of non-genetic diversity in host adaptation. PLoS Biol. 2014;12(4): e1001830. doi: 10.1371/journal.pbio.1001830 PubMed Central PMCID: PMC3972085. 24691005
8. Xie J, Tao L, Nobile CJ, Tong Y, Guan G, Sun Y, et al. White-opaque switching in natural MTLa/alpha isolates of Candida albicans: evolutionary implications for roles in host adaptation, pathogenesis, and sex. PLoS Biol. 2013;11(3): e1001525. doi: 10.1371/journal.pbio.1001525 PubMed Central PMCID: PMC3608550. 23555196
9. Sasse C, Hasenberg M, Weyler M, Gunzer M, Morschhauser J. White-opaque switching of Candida albicans allows immune evasion in an environment-dependent fashion. Eukaryot Cell. 2013;12(1): 50–8. doi: 10.1128/EC.00266-12 PubMed Central PMCID: PMC3535852. 23125350
10. Pande K, Chen C, Noble SM. Passage through the mammalian gut triggers a phenotypic switch that promotes Candida albicans commensalism. Nat Genet. 2013;45(9): 1088–91. doi: 10.1038/ng.2710 PubMed Central PMCID: PMC3758371. 23892606
11. Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004;12(7): 317–24. doi: 10.1016/j.tim.2004.05.008 15223059
12. Di Carlo P, Di Vita G, Guadagnino G, Cocorullo G, D'Arpa F, Salamone G, et al. Surgical pathology and the diagnosis of invasive visceral yeast infection: two case reports and literature review. World J Emerg Surg. 2013;8(1): 38. doi: 10.1186/1749-7922-8-38 PubMed Central PMCID: PMC3849356. 24067049
13. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997;90(5): 939–49. doi: 10.1016/s0092-8674(00)80358-x 9298905
14. Desai JV, Mitchell AP. Candida albicans biofilm development and its genetic control. Microbiol Spectr. 2015;3(3): MB-0005–2014. doi: 10.1128/microbiolspec.MB-0005-2014 PubMed Central PMCID: PMC4507287. 26185083
15. Brand A. Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol. 2012;2012: 517529. doi: 10.1155/2012/517529 PubMed Central PMCID: PMC3216317. 22121367
16. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2): 119–28. doi: 10.4161/viru.22913 PubMed Central PMCID: PMC3654610. 23302789
17. Theelen B, Cafarchia C, Gaitanis G, Bassukas ID, Boekhout T, Dawson TL Jr. Malassezia ecology, pathophysiology, and treatment. Med Mycol. 2018;56(suppl_1): S10–S25. doi: 10.1093/mmy/myx134 29538738.
18. Amend A. From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog. 2012;10(8): e1004277. doi: 10.1371/journal.ppat.1004277.g001
19. Richards TA, Jones MD, Leonard G, Bass D. Marine fungi: their ecology and molecular diversity. Ann Rev Mar Sci. 2012;4: 495–522. doi: 10.1146/annurev-marine-120710-100802 22457985
20. Ashbee HR. Update on the genus Malassezia. Med Mycol. 2007;45(4): 287–303. doi: 10.1080/13693780701191373 17510854.
21. Ashbee HR, Evans EG. Immunology of diseases associated with Malassezia species. Clin Microbiol Rev. 2002;15(1): 21–57. doi: 10.1128/CMR.15.1.21-57.2002 11781265; PubMed Central PMCID: PMC118058.
22. Midgley G. Morphological variation in Malassezia and its significance in pityriasis versicolor. In: Bossche H, Odds FC, Kerridge D, editors. Dimorphic fungi in biology and medicine. Boston, MA: Springer; 1993. p. 267–77.
23. Kirkland TN, Fierer J. Coccidioides immitis and posadasii; a review of their biology, genomics, pathogenesis, and host immunity. Virulence. 2018;9(1): 1426–35. doi: 10.1080/21505594.2018.1509667 30179067; PubMed Central PMCID: PMC6141143.
24. Del Rocio Reyes-Montes M, Perez-Huitron MA, Ocana-Monroy JL, Frias-De-Leon MG, Martinez-Herrera E, Arenas R, et al. The habitat of Coccidioides spp. and the role of animals as reservoirs and disseminators in nature. BMC Infect Dis. 2016;16(1): 550. doi: 10.1186/s12879-016-1902-7 27724885
25. Saubolle MA, McKellar PP, Sussland D. Epidemiologic, clinical, and diagnostic aspects of coccidioidomycosis. J Clin Microbiol. 2007;45(1): 26–30. doi: 10.1128/JCM.02230-06 PubMed Central PMCID: PMC1828958. 17108067
26. Nguyen C, Barker BM, Hoover S, Nix DE, Ampel NM, Frelinger JA, et al. Recent advances in our understanding of the environmental, epidemiological, immunological, and clinical dimensions of coccidioidomycosis. Clin Microbiol Rev. 2013;26(3): 505–25. doi: 10.1128/CMR.00005-13 PubMed Central PMCID: PMC3719491. 23824371
27. Munoz-Hernandez B, Martinez-Rivera MA, Palma-Cortes G, Manjarrez E. Innovation of the parasitic cycle of Coccidioides spp. In: Shah MM, editor. Parasitology: InTech; 2012.
28. Munoz-Hernandez B, Palma-Cortes G, Cabello-Gutierrez C, Martinez-Rivera MA. Parasitic polymorpism of Coccidioides spp. BMC Infect. 2014;14: 213.
29. Kwon-Chung KJ, Fraser JA, Doering TL, Wang Z, Janbon G, Idnurm A, et al. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med. 2014;4(7): a019760. doi: 10.1101/cshperspect.a019760 PubMed Central PMCID: PMC4066639. 24985132
30. Steenbergen JN, Shuman HA, Casadevall A. Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proc Natl Acad Sci USA. 2001;98(26): 15245–50. doi: 10.1073/pnas.261418798 11742090
31. O'Meara TR, Alspaugh JA. The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev. 2012;25(3): 387–408. doi: 10.1128/CMR.00001-12 PubMed Central PMCID: PMC3416491. 22763631
32. Zaragoza O. Basic principles of the virulence of Cryptococcus. Virulence. 2019;10(1): 490–501. doi: 10.1080/21505594.2019.1614383 PubMed Central PMCID: PMC6550552. 31119976
33. Zaragoza O, Nielsen K. Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr Opin Microbiol. 2013;16(4): 409–13. doi: 10.1016/j.mib.2013.03.006 PubMed Central PMCID: PMC3723695. 23588027
34. Okagaki LH, Nielsen K. Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections. Eukaryot Cell. 2012;11(6): 820–6. doi: 10.1128/EC.00121-12 PubMed Central PMCID: PMC3370461. 22544904
35. Gerstein AC, Fu MS, Mukaremera L, Li Z, Ormerod KL, Fraser JA, et al. Polyploid titan cells produce haploid and aneuploid progeny to promote stress adaptation. mBio. 2015;6(5): e01340–15. doi: 10.1128/mBio.01340-15 PubMed Central PMCID: PMC4620463. 26463162
36. Zaragoza O. Multiple disguises for the same party: the concepts of morphogenesis and phenotypic variations in Cryptococcus neoformans. Front Microbiol. 2011;2: 181. doi: 10.3389/fmicb.2011.00181 PubMed Central PMCID: PMC3167222. 21922016
37. Feldmesser M, Kress Y, Casadevall A. Dynamic changes in the morphology of Cryptococcus neoformans during murine pulmonary infection. Microbiology. 2001;147(8): 2355–65. doi: 10.1099/00221287-147-8-2355 11496012
38. Fernandes KE, Brockway A, Haverkamp M, Cuomo CA, van Ogtrop F, Perfect JR, et al. Phenotypic variability correlates with clinical outcome in Cryptococcus isolates obtained from Botswanan HIV/AIDS patients. mBio. 2018;9(5): e02016–18. doi: 10.1128/mBio.02016-18 PubMed Central PMCID: PMC6199498. 30352938
39. Fernandes KE, Dwyer C, Campbell LT, Carter DA. Species in the Cryptococcus gattii complex differ in capsule and cell size following growth under capsule-inducing conditions. mSphere. 2016;1(6): e00350–16. doi: 10.1128/mSphere.00350-16 PubMed Central PMCID: PMC5196034. 28066814
40. Hewitt SK, Foster DS, Dyer PS, Avery SV. Phenotypic heterogeneity in fungi: importance and methodology. Fungal Biology Reviews. 2016;30(4): 176–84. doi: 10.1016/j.fbr.2016.09.002
Článek vyšel v časopise
PLOS Pathogens
2020 Číslo 6
- Nový algoritmus zpřesní predikci rizika kardiovaskulárních onemocnění
- Jak se válečná Ukrajina stala semeništěm superrezistentních bakterií
- Nejpodivnější vačnatci, rybí dvojníci, pradávná syfilis a katastrofické zapomínání – „jednohubky“ z výzkumu 2025/2
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
Nejčtenější v tomto čísle
- Translational profiling of macrophages infected with Leishmania donovani identifies mTOR- and eIF4A-sensitive immune-related transcripts
- Biological sex impacts COVID-19 outcomes
- Rapid in vitro generation of bona fide exhausted CD8+ T cells is accompanied by Tcf7 promotor methylation
- Potentiation of rifampin activity in a mouse model of tuberculosis by activation of host transcription factor EB