Modular Mimicry and Engagement of the Hippo Pathway by Marburg Virus VP40: Implications for Filovirus Biology and Budding
Autoři:
Ziying Han aff001; Shantoshini Dash aff001; Cari A. Sagum aff002; Gordon Ruthel aff001; Chaitanya K. Jaladanki aff003; Corbett T. Berry aff001; Michael Patrick Schwoerer aff001; Nina M. Harty aff001; Bruce D. Freedman aff001; Mark T. Bedford aff002; Hao Fan aff003; Sachdev S. Sidhu aff004; Marius Sudol aff003; Olena Shtanko aff005; Ronald N. Harty aff001
Působiště autorů:
Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
aff001; Department of Epigenetics & Molecular Carcinogenesis, M.D. Anderson Cancer Center, University of Texas, Smithville, Texas, United States of America
aff002; Department of Physiology and Mechanobiology Institute at National University of Singapore, Institute for Molecular and Cell Biology, IMCB, and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore
aff003; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
aff004; Texas Biomedical Research Institute, San Antonio, Texas, United States of America
aff005
Vyšlo v časopise:
Modular Mimicry and Engagement of the Hippo Pathway by Marburg Virus VP40: Implications for Filovirus Biology and Budding. PLoS Pathog 16(1): e1008231. doi:10.1371/journal.ppat.1008231
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.ppat.1008231
Souhrn
Ebola (EBOV) and Marburg (MARV) are members of the Filoviridae family, which continue to emerge and cause sporadic outbreaks of hemorrhagic fever with high mortality rates. Filoviruses utilize their VP40 matrix protein to drive virion assembly and budding, in part, by recruitment of specific WW-domain-bearing host proteins via its conserved PPxY Late (L) domain motif. Here, we screened an array of 115 mammalian, bacterially expressed and purified WW-domains using a PPxY-containing peptide from MARV VP40 (mVP40) to identify novel host interactors. Using this unbiased approach, we identified Yes Associated Protein (YAP) and Transcriptional co-Activator with PDZ-binding motif (TAZ) as novel mVP40 PPxY interactors. YAP and TAZ function as downstream transcriptional effectors of the Hippo signaling pathway that regulates cell proliferation, migration and apoptosis. We demonstrate that ectopic expression of YAP or TAZ along with mVP40 leads to significant inhibition of budding of mVP40 VLPs in a WW-domain/PPxY dependent manner. Moreover, YAP colocalized with mVP40 in the cytoplasm, and inhibition of mVP40 VLP budding was more pronounced when YAP was localized predominantly in the cytoplasm rather than in the nucleus. A key regulator of YAP nuclear/cytoplasmic localization and function is angiomotin (Amot); a multi-PPxY containing protein that strongly interacts with YAP WW-domains. Interestingly, we found that expression of PPxY-containing Amot rescued mVP40 VLP egress from either YAP- or TAZ-mediated inhibition in a PPxY-dependent manner. Importantly, using a stable Amot-knockdown cell line, we found that expression of Amot was critical for efficient egress of mVP40 VLPs as well as egress and spread of authentic MARV in infected cell cultures. In sum, we identified novel negative (YAP/TAZ) and positive (Amot) regulators of MARV VP40-mediated egress, that likely function in part, via competition between host and viral PPxY motifs binding to modular host WW-domains. These findings not only impact our mechanistic understanding of virus budding and spread, but also may impact the development of new antiviral strategies.
Klíčová slova:
Cell membranes – Cytoplasm – Graphs – Host-pathogen interactions – Membrane proteins – Phosphorylation – Protein domains – Filoviruses
Zdroje
1. Coffin KM, Liu J, Warren TK, Blancett CD, Kuehl KA, et al. (2018) Persistent Marburg Virus Infection in the Testes of Nonhuman Primate Survivors. Cell host & microbe 24: 405–416 e403.
2. Schindell BG, Webb AL, Kindrachuk J (2018) Persistence and Sexual Transmission of Filoviruses. Viruses 10.
3. Yeh S, Varkey JB, Crozier I (2015) Persistent Ebola Virus in the Eye. The New England journal of medicine 373: 1982–1983.
4. Zeng X, Blancett CD, Koistinen KA, Schellhase CW, Bearss JJ, et al. (2017) Identification and pathological characterization of persistent asymptomatic Ebola virus infection in rhesus monkeys. Nat Microbiol 2: 17113. doi: 10.1038/nmicrobiol.2017.113 28715405
5. Han Z, Madara JJ, Liu Y, Liu W, Ruthel G, et al. (2015) ALIX Rescues Budding of a Double PTAP/PPEY L-Domain Deletion Mutant of Ebola VP40: A Role for ALIX in Ebola Virus Egress. The Journal of infectious diseases 212 Suppl 2: S138–145.
6. Lu J, Qu Y, Liu Y, Jambusaria R, Han Z, et al. (2013) Host IQGAP1 and Ebola virus VP40 interactions facilitate virus-like particle egress. Journal of virology 87: 7777–7780. doi: 10.1128/JVI.00470-13 23637409
7. Liu Y, Lee MS, Olson MA, Harty RN (2011) Bimolecular Complementation to Visualize Filovirus VP40-Host Complexes in Live Mammalian Cells: Toward the Identification of Budding Inhibitors. Advances in virology 2011.
8. Noda T, Ebihara H, Muramoto Y, Fujii K, Takada A, et al. (2006) Assembly and budding of Ebolavirus. PLoS pathogens 2: e99. doi: 10.1371/journal.ppat.0020099 17009868
9. Hartlieb B, Weissenhorn W (2006) Filovirus assembly and budding. Virology 344: 64–70. doi: 10.1016/j.virol.2005.09.018 16364737
10. Jasenosky LD, Kawaoka Y (2004) Filovirus budding. Virus research 106: 181–188. doi: 10.1016/j.virusres.2004.08.014 15567496
11. Yasuda J, Nakao M, Kawaoka Y, Shida H (2003) Nedd4 regulates egress of Ebola virus-like particles from host cells. Journal of virology 77: 9987–9992. doi: 10.1128/JVI.77.18.9987-9992.2003 12941909
12. Timmins J, Schoehn G, Ricard-Blum S, Scianimanico S, Vernet T, et al. (2003) Ebola virus matrix protein VP40 interaction with human cellular factors Tsg101 and Nedd4. Journal of molecular biology 326: 493–502. doi: 10.1016/s0022-2836(02)01406-7 12559917
13. Harty RN, Brown ME, Wang G, Huibregtse J, Hayes FP (2000) A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proceedings of the National Academy of Sciences of the United States of America 97: 13871–13876. doi: 10.1073/pnas.250277297 11095724
14. Bieniasz PD (2006) Late budding domains and host proteins in enveloped virus release. Virology 344: 55–63. doi: 10.1016/j.virol.2005.09.044 16364736
15. Calistri A, Salata C, Parolin C, Palu G (2009) Role of multivesicular bodies and their components in the egress of enveloped RNA viruses. Reviews in medical virology 19: 31–45. doi: 10.1002/rmv.588 18618839
16. Chen BJ, Lamb RA (2008) Mechanisms for enveloped virus budding: can some viruses do without an ESCRT? Virology 372: 221–232. doi: 10.1016/j.virol.2007.11.008 18063004
17. Harty RN (2009) No exit: targeting the budding process to inhibit filovirus replication. Antiviral research 81: 189–197. doi: 10.1016/j.antiviral.2008.12.003 19114059
18. Irie T, Licata JM, Harty RN (2005) Functional characterization of Ebola virus L-domains using VSV recombinants. Virology 336: 291–298. doi: 10.1016/j.virol.2005.03.027 15892969
19. Liu Y, Harty RN (2010) Viral and host proteins that modulate filovirus budding. Future virology 5: 481–491. doi: 10.2217/FVL.10.33 20730024
20. Urata S, de la Torre JC (2011) Arenavirus budding. Advances in virology 2011: 180326. doi: 10.1155/2011/180326 22312335
21. Han Z, Lu J, Liu Y, Davis B, Lee MS, et al. (2014) Small-molecule probes targeting the viral PPxY-host Nedd4 interface block egress of a broad range of RNA viruses. Journal of virology 88: 7294–7306. doi: 10.1128/JVI.00591-14 24741084
22. Lewis B, Whitney S, Hudacik L, Galmin L, Huaman MC, et al. (2014) Nedd4-mediated increase in HIV-1 Gag and Env proteins and immunity following DNA-vaccination of BALB/c mice. PloS one 9: e91267. doi: 10.1371/journal.pone.0091267 24614057
23. Sette P, Nagashima K, Piper RC, Bouamr F (2013) Ubiquitin conjugation to Gag is essential for ESCRT-mediated HIV-1 budding. Retrovirology 10: 79. doi: 10.1186/1742-4690-10-79 23895345
24. Zhadina M, Bieniasz PD (2010) Functional interchangeability of late domains, late domain cofactors and ubiquitin in viral budding. PLoS pathogens 6: e1001153. doi: 10.1371/journal.ppat.1001153 20975941
25. Weiss ER, Popova E, Yamanaka H, Kim HC, Huibregtse JM, et al. (2010) Rescue of HIV-1 release by targeting widely divergent NEDD4-type ubiquitin ligases and isolated catalytic HECT domains to Gag. PLoS pathogens 6: e1001107. doi: 10.1371/journal.ppat.1001107 20862313
26. Sette P, Jadwin JA, Dussupt V, Bello NF, Bouamr F (2010) The ESCRT-associated protein Alix recruits the ubiquitin ligase Nedd4-1 to facilitate HIV-1 release through the LYPXnL L domain motif. Journal of virology 84: 8181–8192. doi: 10.1128/JVI.00634-10 20519395
27. Urata S, Yasuda J (2010) Regulation of Marburg virus (MARV) budding by Nedd4.1: a different WW domain of Nedd4.1 is critical for binding to MARV and Ebola virus VP40. The Journal of general virology 91: 228–234. doi: 10.1099/vir.0.015495-0 19812267
28. Usami Y, Popov S, Popova E, Inoue M, Weissenhorn W, et al. (2009) The ESCRT pathway and HIV-1 budding. Biochemical Society transactions 37: 181–184. doi: 10.1042/BST0370181 19143627
29. Calistri A, Del Vecchio C, Salata C, Celestino M, Celegato M, et al. (2009) Role of the feline immunodeficiency virus L-domain in the presence or absence of Gag processing: involvement of ubiquitin and Nedd4-2s ligase in viral egress. Journal of cellular physiology 218: 175–182. doi: 10.1002/jcp.21587 18792916
30. Pincetic A, Medina G, Carter C, Leis J (2008) Avian sarcoma virus and human immunodeficiency virus, type 1 use different subsets of ESCRT proteins to facilitate the budding process. The Journal of biological chemistry 283: 29822–29830. doi: 10.1074/jbc.M804157200 18723511
31. Chung HY, Morita E, von Schwedler U, Muller B, Krausslich HG, et al. (2008) NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. Journal of virology 82: 4884–4897. doi: 10.1128/JVI.02667-07 18321968
32. Zhadina M, McClure MO, Johnson MC, Bieniasz PD (2007) Ubiquitin-dependent virus particle budding without viral protein ubiquitination. Proceedings of the National Academy of Sciences of the United States of America 104: 20031–20036. doi: 10.1073/pnas.0708002104 18056634
33. Urata S, Noda T, Kawaoka Y, Yokosawa H, Yasuda J (2006) Cellular factors required for Lassa virus budding. Journal of virology 80: 4191–4195. doi: 10.1128/JVI.80.8.4191-4195.2006 16571837
34. Klinger PP, Schubert U (2005) The ubiquitin-proteasome system in HIV replication: potential targets for antiretroviral therapy. Expert review of anti-infective therapy 3: 61–79. doi: 10.1586/14787210.3.1.61 15757458
35. Vana ML, Tang Y, Chen A, Medina G, Carter C, et al. (2004) Role of Nedd4 and ubiquitination of Rous sarcoma virus Gag in budding of virus-like particles from cells. Journal of virology 78: 13943–13953. doi: 10.1128/JVI.78.24.13943-13953.2004 15564502
36. Sakurai A, Yasuda J, Takano H, Tanaka Y, Hatakeyama M, et al. (2004) Regulation of human T-cell leukemia virus type 1 (HTLV-1) budding by ubiquitin ligase Nedd4. Microbes and infection / Institut Pasteur 6: 150–156.
37. Yasuda J, Hunter E, Nakao M, Shida H (2002) Functional involvement of a novel Nedd4-like ubiquitin ligase on retrovirus budding. EMBO reports 3: 636–640. doi: 10.1093/embo-reports/kvf132 12101095
38. Harty RN, Brown ME, McGettigan JP, Wang G, Jayakar HR, et al. (2001) Rhabdoviruses and the cellular ubiquitin-proteasome system: a budding interaction. Journal of virology 75: 10623–10629. doi: 10.1128/JVI.75.22.10623-10629.2001 11602704
39. Kikonyogo A, Bouamr F, Vana ML, Xiang Y, Aiyar A, et al. (2001) Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells. Proceedings of the National Academy of Sciences of the United States of America 98: 11199–11204. doi: 10.1073/pnas.201268998 11562473
40. Licata JM, Simpson-Holley M, Wright NT, Han Z, Paragas J, et al. (2003) Overlapping motifs (PTAP and PPEY) within the Ebola virus VP40 protein function independently as late budding domains: involvement of host proteins TSG101 and VPS-4. Journal of virology 77: 1812–1819. doi: 10.1128/JVI.77.3.1812-1819.2003 12525615
41. Bouamr F, Melillo JA, Wang MQ, Nagashima K, de Los Santos M, et al. (2003) PPPYVEPTAP motif is the late domain of human T-cell leukemia virus type 1 Gag and mediates its functional interaction with cellular proteins Nedd4 and Tsg101 [corrected]. Journal of virology 77: 11882–11895. doi: 10.1128/JVI.77.22.11882-11895.2003 14581525
42. Blot V, Perugi F, Gay B, Prevost MC, Briant L, et al. (2004) Nedd4.1-mediated ubiquitination and subsequent recruitment of Tsg101 ensure HTLV-1 Gag trafficking towards the multivesicular body pathway prior to virus budding. Journal of cell science 117: 2357–2367. doi: 10.1242/jcs.01095 15126635
43. Martin-Serrano J, Perez-Caballero D, Bieniasz PD (2004) Context-dependent effects of L domains and ubiquitination on viral budding. Journal of virology 78: 5554–5563. doi: 10.1128/JVI.78.11.5554-5563.2004 15140952
44. Medina G, Pincetic A, Ehrlich LS, Zhang Y, Tang Y, et al. (2008) Tsg101 can replace Nedd4 function in ASV Gag release but not membrane targeting. Virology 377: 30–38. doi: 10.1016/j.virol.2008.04.024 18555885
45. Usami Y, Popov S, Popova E, Gottlinger HG (2008) Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase. Journal of virology 82: 4898–4907. doi: 10.1128/JVI.02675-07 18321969
46. Einbond A, Sudol M (1996) Towards prediction of cognate complexes between the WW domain and proline-rich ligands. FEBS letters 384: 1–8. doi: 10.1016/0014-5793(96)00263-3 8797792
47. Chen HI, Einbond A, Kwak SJ, Linn H, Koepf E, et al. (1997) Characterization of the WW domain of human yes-associated protein and its polyproline-containing ligands. The Journal of biological chemistry 272: 17070–17077. doi: 10.1074/jbc.272.27.17070 9202023
48. Chen HI, Sudol M (1995) The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proceedings of the National Academy of Sciences of the United States of America 92: 7819–7823. doi: 10.1073/pnas.92.17.7819 7644498
49. Linn H, Ermekova KS, Rentschler S, Sparks AB, Kay BK, et al. (1997) Using molecular repertoires to identify high-affinity peptide ligands of the WW domain of human and mouse YAP. Biological chemistry 378: 531–537. doi: 10.1515/bchm.1997.378.6.531 9224934
50. Espejo A, Cote J, Bednarek A, Richard S, Bedford MT (2002) A protein-domain microarray identifies novel protein-protein interactions. The Biochemical journal 367: 697–702. doi: 10.1042/BJ20020860 12137563
51. Ardestani A, Lupse B, Maedler K (2018) Hippo Signaling: Key Emerging Pathway in Cellular and Whole-Body Metabolism. Trends Endocrinol Metab 29: 492–509. doi: 10.1016/j.tem.2018.04.006 29739703
52. Chen YA, Lu CY, Cheng TY, Pan SH, Chen HF, et al. (2019) WW Domain-Containing Proteins YAP and TAZ in the Hippo Pathway as Key Regulators in Stemness Maintenance, Tissue Homeostasis, and Tumorigenesis. Front Oncol 9: 60. doi: 10.3389/fonc.2019.00060 30805310
53. Kim Y, Jho EH (2018) Regulation of the Hippo signaling pathway by ubiquitin modification. BMB reports 51: 143–150. doi: 10.5483/BMBRep.2018.51.3.017 29366444
54. Ma S, Meng Z, Chen R, Guan KL (2018) The Hippo Pathway: Biology and Pathophysiology. Annual review of biochemistry doi: 10.1146/annurev-biochem-013118-111829
55. Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes & development 30: 1–17.
56. Misra JR, Irvine KD (2018) The Hippo Signaling Network and Its Biological Functions. Annu Rev Genet 52: 65–87. doi: 10.1146/annurev-genet-120417-031621 30183404
57. Seo J, Kim J (2018) Regulation of Hippo signaling by actin remodeling. BMB reports 51: 151–156. doi: 10.5483/BMBRep.2018.51.3.012 29353600
58. Sudol M, Harvey KF (2010) Modularity in the Hippo signaling pathway. Trends in biochemical sciences 35: 627–633. doi: 10.1016/j.tibs.2010.05.010 20598891
59. Chan SW, Lim CJ, Guo F, Tan I, Leung T, et al. (2013) Actin-binding and cell proliferation activities of angiomotin family members are regulated by Hippo pathway-mediated phosphorylation. The Journal of biological chemistry 288: 37296–37307. doi: 10.1074/jbc.M113.527598 24225952
60. Cox CM, Mandell EK, Stewart L, Lu R, Johnson DL, et al. (2015) Endosomal regulation of contact inhibition through the AMOT:YAP pathway. Molecular biology of the cell 26: 2673–2684. doi: 10.1091/mbc.E15-04-0224 25995376
61. Hong W (2013) Angiomotin'g YAP into the nucleus for cell proliferation and cancer development. Science signaling 6: pe27.
62. Mana-Capelli S, Paramasivam M, Dutta S, McCollum D (2014) Angiomotins link F-actin architecture to Hippo pathway signaling. Molecular biology of the cell 25: 1676–1685. doi: 10.1091/mbc.E13-11-0701 24648494
63. Moleirinho S, Guerrant W, Kissil JL (2014) The Angiomotins—from discovery to function. FEBS letters 588: 2693–2703. doi: 10.1016/j.febslet.2014.02.006 24548561
64. Moleirinho S, Hoxha S, Mandati V, Curtale G, Troutman S, et al. (2017) Regulation of localization and function of the transcriptional co-activator YAP by angiomotin. eLife 6.
65. Zhao B, Li L, Lu Q, Wang LH, Liu CY, et al. (2011) Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes & development 25: 51–63.
66. Lv M, Li S, Luo C, Zhang X, Shen Y, et al. (2016) Angiomotin promotes renal epithelial and carcinoma cell proliferation by retaining the nuclear YAP. Oncotarget 7: 12393–12403. doi: 10.18632/oncotarget.7161 26848622
67. Kim M, Kim M, Park SJ, Lee C, Lim DS (2016) Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO reports 17: 64–78. doi: 10.15252/embr.201540809 26598551
68. Yi C, Shen Z, Stemmer-Rachamimov A, Dawany N, Troutman S, et al. (2013) The p130 isoform of angiomotin is required for Yap-mediated hepatic epithelial cell proliferation and tumorigenesis. Science signaling 6: ra77.
69. Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, et al. (2011) Hippo pathway-independent restriction of TAZ and YAP by angiomotin. The Journal of biological chemistry 286: 7018–7026. doi: 10.1074/jbc.C110.212621 21224387
70. Sudol M, Shields DC, Farooq A (2012) Structures of YAP protein domains reveal promising targets for development of new cancer drugs. Seminars in cell & developmental biology 23: 827–833.
71. Oka T, Mazack V, Sudol M (2008) Mst2 and Lats kinases regulate apoptotic function of Yes kinase-associated protein (YAP). The Journal of biological chemistry 283: 27534–27546. doi: 10.1074/jbc.M804380200 18640976
72. Zhao B, Wei X, Li W, Udan RS, Yang Q, et al. (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes & development 21: 2747–2761.
73. Nardone G, Oliver-De La Cruz J, Vrbsky J, Martini C, Pribyl J, et al. (2017) YAP regulates cell mechanics by controlling focal adhesion assembly. Nature communications 8: 15321. doi: 10.1038/ncomms15321 28504269
74. Fan R, Kim NG, Gumbiner BM (2013) Regulation of Hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proceedings of the National Academy of Sciences of the United States of America 110: 2569–2574. doi: 10.1073/pnas.1216462110 23359693
75. Plouffe SW, Lin KC, Moore JL 3rd, Tan FE, Ma S, et al. (2018) The Hippo pathway effector proteins YAP and TAZ have both distinct and overlapping functions in the cell. The Journal of biological chemistry 293: 11230–11240. doi: 10.1074/jbc.RA118.002715 29802201
76. Mana-Capelli S, McCollum D (2018) Angiomotins stimulate LATS kinase autophosphorylation and act as scaffolds that promote Hippo signaling. The Journal of biological chemistry 293: 18230–18241. doi: 10.1074/jbc.RA118.004187 30266805
77. Zaltsman Y, Masuko S, Bensen JJ, Kiessling LL (2019) Angiomotin Regulates YAP Localization during Neural Differentiation of Human Pluripotent Stem Cells. Stem Cell Reports doi: 10.1016/j.stemcr.2019.03.009 31006631
78. Shtanko O, Sakurai Y, Reyes AN, Noel R, Cintrat JC, et al. (2018) Retro-2 and its dihydroquinazolinone derivatives inhibit filovirus infection. Antiviral research 149: 154–163. doi: 10.1016/j.antiviral.2017.11.016 29175127
79. Madara JJ, Han Z, Ruthel G, Freedman BD, Harty RN (2015) The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future virology 10: 537–546. doi: 10.2217/fvl.15.6 26120351
80. Garnier L, Wills JW, Verderame MF, Sudol M (1996) WW domains and retrovirus budding. Nature 381: 744–745. doi: 10.1038/381744a0 8657277
81. Han Z, Schwoerer MP, Hicks P, Liang J, Ruthel G, et al. (2018) Host Protein BAG3 is a Negative Regulator of Lassa VLP Egress. Diseases 6.
82. Liang J, Sagum CA, Bedford MT, Sidhu SS, Sudol M, et al. (2017) Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress. PLoS pathogens 13: e1006132. doi: 10.1371/journal.ppat.1006132 28076420
83. Ulbricht A, Eppler FJ, Tapia VE, van der Ven PF, Hampe N, et al. (2013) Cellular mechanotransduction relies on tension-induced and chaperone-assisted autophagy. Current biology: CB 23: 430–435. doi: 10.1016/j.cub.2013.01.064 23434281
84. Troyanovsky B, Levchenko T, Mansson G, Matvijenko O, Holmgren L (2001) Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. The Journal of cell biology 152: 1247–1254. doi: 10.1083/jcb.152.6.1247 11257124
85. Mercenne G, Alam SL, Arii J, Lalonde MS, Sundquist WI (2015) Angiomotin functions in HIV-1 assembly and budding. eLife 4.
86. Pei Z, Bai Y, Schmitt AP (2010) PIV5 M protein interaction with host protein angiomotin-like 1. Virology 397: 155–166. doi: 10.1016/j.virol.2009.11.002 19932912
87. Ray G, Schmitt PT, Schmitt AP (2019) Angiomotin-Like 1 Links Paramyxovirus M Proteins to NEDD4 Family Ubiquitin Ligases. Viruses 11.
88. Oka T, Schmitt AP, Sudol M (2012) Opposing roles of angiomotin-like-1 and zona occludens-2 on pro-apoptotic function of YAP. Oncogene 31: 128–134. doi: 10.1038/onc.2011.216 21685940
89. Adler JJ, Heller BL, Bringman LR, Ranahan WP, Cocklin RR, et al. (2013) Amot130 adapts atrophin-1 interacting protein 4 to inhibit yes-associated protein signaling and cell growth. The Journal of biological chemistry 288: 15181–15193. doi: 10.1074/jbc.M112.446534 23564455
90. Zhang C, Wang F, Xie Z, Chen L, Sinkemani A, et al. (2018) AMOT130 linking F-actin to YAP is involved in intervertebral disc degeneration. Cell Prolif 51: e12492. doi: 10.1111/cpr.12492 30039887
91. Citi S, Guerrera D, Spadaro D, Shah J (2014) Epithelial junctions and Rho family GTPases: the zonular signalosome. Small GTPases 5: 1–15.
92. Spadaro D, Tapia R, Pulimeno P, Citi S (2012) The control of gene expression and cell proliferation by the epithelial apical junctional complex. Essays in biochemistry 53: 83–93. doi: 10.1042/bse0530083 22928510
93. Yi C, Troutman S, Fera D, Stemmer-Rachamimov A, Avila JL, et al. (2011) A tight junction-associated Merlin-angiomotin complex mediates Merlin's regulation of mitogenic signaling and tumor suppressive functions. Cancer cell 19: 527–540. doi: 10.1016/j.ccr.2011.02.017 21481793
94. Zheng Y, Vertuani S, Nystrom S, Audebert S, Meijer I, et al. (2009) Angiomotin-like protein 1 controls endothelial polarity and junction stability during sprouting angiogenesis. Circulation research 105: 260–270. doi: 10.1161/CIRCRESAHA.109.195156 19590046
95. Han Z, Sagum CA, Bedford MT, Sidhu SS, Sudol M, et al. (2016) ITCH E3 Ubiquitin Ligase Interacts with Ebola Virus VP40 to Regulate Budding. Journal of virology doi: 10.1128/JVI.01078-16 27489272
96. Aragon E, Goerner N, Xi Q, Gomes T, Gao S, et al. (2012) Structural basis for the versatile interactions of Smad7 with regulator WW domains in TGF-beta Pathways. Structure 20: 1726–1736. doi: 10.1016/j.str.2012.07.014 22921829
97. Tubert-Brohman I, Sherman W, Repasky M, Beuming T (2013) Improved docking of polypeptides with Glide. Journal of chemical information and modeling 53: 1689–1699. doi: 10.1021/ci400128m 23800267
Štítky
Hygiena a epidemiologie Infekční lékařství LaboratořČlánek vyšel v časopise
PLOS Pathogens
2020 Číslo 1
- Perorální antivirotika jako vysoce efektivní nástroj prevence hospitalizací kvůli COVID-19 − otázky a odpovědi pro praxi
- Stillova choroba: vzácné a závažné systémové onemocnění
- Diagnostický algoritmus při podezření na syndrom periodické horečky
- Jak souvisí postcovidový syndrom s poškozením mozku?
- Diagnostika virových hepatitid v kostce – zorientujte se (nejen) v sérologii
Nejčtenější v tomto čísle
- Chromatin maturation of the HIV-1 provirus in primary resting CD4+ T cells
- Hydropic anthelmintics against parasitic nematodes
- Norovirus infection results in eIF2α independent host translation shut-off and remodels the G3BP1 interactome evading stress granule formation
- Modular Mimicry and Engagement of the Hippo Pathway by Marburg Virus VP40: Implications for Filovirus Biology and Budding