#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Chromatin maturation of the HIV-1 provirus in primary resting CD4+ T cells


Autoři: Birgitta Lindqvist aff001;  Sara Svensson Akusjärvi aff002;  Anders Sönnerborg aff002;  Marios Dimitriou aff004;  J. Peter Svensson aff001
Působiště autorů: Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden aff001;  Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden aff002;  Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska Institutet, Huddinge, Sweden aff003;  Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden aff004
Vyšlo v časopise: Chromatin maturation of the HIV-1 provirus in primary resting CD4+ T cells. PLoS Pathog 16(1): e1008264. doi:10.1371/journal.ppat.1008264
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.ppat.1008264

Souhrn

Human immunodeficiency virus type 1 (HIV-1) infection is a chronic condition, where viral DNA integrates into the genome. Latently infected cells form a persistent, heterogeneous reservoir that at any time can reactivate the integrated HIV-1. Here we confirmed that latently infected cells from HIV-1 positive study participants exhibited active HIV-1 transcription but without production of mature spliced mRNAs. To elucidate the mechanisms behind this we employed primary HIV-1 latency models to study latency establishment and maintenance. We characterized proviral transcription and chromatin development in cultures of resting primary CD4+ T-cells for four months after ex vivo HIV-1 infection. As heterochromatin (marked with H3K9me3 or H3K27me3) gradually stabilized, the provirus became less accessible with reduced activation potential. In a subset of infected cells, active marks (e.g. H3K27ac) and elongating RNAPII remained detectable at the latent provirus, despite prolonged proviral silencing. In many aspects, latent HIV-1 resembled an active enhancer in a subset of resting cells. The enhancer chromatin actively promoted latency and the enhancer-specific CBP/P300-inhibitor GNE049 was identified as a new latency reversal agent. The division of the latent reservoir according to distinct chromatin compositions with different reactivation potential enforces the notion that even though a relatively large set of cells contains the HIV-1 provirus, only a discrete subset is readily able to reactivate the provirus and spread the infection.

Klíčová slova:

Flow cytometry – Heterochromatin – HIV – HIV-1 – Chromatin – Primary cells – T cells – Viral persistence and latency


Zdroje

1. Shan L, Deng K, Gao HB, Xing SF, Capoferri AA, et al. (2017) Transcriptional Reprogramming during Effector-to-Memory Transition Renders CD4(+) T Cells Permissive for Latent HIV-1 Infection. Immunity 47: 766–+. doi: 10.1016/j.immuni.2017.09.014 29045905

2. Chun TW, Finzi D, Margolick J, Chadwick K, Schwartz D, et al. (1995) In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency. Nat Med 1: 1284–1290. doi: 10.1038/nm1295-1284 7489410

3. Eriksson S, Graf EH, Dahl V, Strain MC, Yukl SA, et al. (2013) Comparative Analysis of Measures of Viral Reservoirs in HIV-1 Eradication Studies. Plos Pathogens 9.

4. Chun TW, Carruth L, Finzi D, Shen X, DiGiuseppe JA, et al. (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387: 183–188. doi: 10.1038/387183a0 9144289

5. Bruner KM, Murray AJ, Pollack RA, Soliman MG, Laskey SB, et al. (2016) Defective proviruses rapidly accumulate during acute HIV-1 infection. Nature Medicine 22: 1043–+. doi: 10.1038/nm.4156 27500724

6. Hiener B, Horsburgh BA, Eden JS, Barton K, Schlub TE, et al. (2017) Identification of Genetically Intact HIV-1 Proviruses in Specific CD4(+) T Cells from Effectively Treated Participants. Cell Reports 21: 813–822. doi: 10.1016/j.celrep.2017.09.081 29045846

7. Ho YC, Shan L, Hosmane NN, Wang J, Laskey SB, et al. (2013) Replication-Competent Noninduced Proviruses in the Latent Reservoir Increase Barrier to HIV-1 Cure. Cell 155: 540–551. doi: 10.1016/j.cell.2013.09.020 24243014

8. Imamichi H, Dewar RL, Adelsberger JW, Rehm CA, O'Doherty U, et al. (2016) Defective HIV-1 proviruses produce novel protein-coding RNA species in HIV-infected patients on combination antiretroviral therapy. Proceedings of the National Academy of Sciences of the United States of America 113: 8783–8788. doi: 10.1073/pnas.1609057113 27432972

9. Imamichi H, Natarajan V, Adelsberger JW, Rehm CA, Lempicki RA, et al. (2014) Lifespan of effector memory CD4(+) T cells determined by replication-incompetent integrated HIV-1 provirus. Aids 28: 1091–1099. doi: 10.1097/QAD.0000000000000223 24492253

10. Bruner KM, Wang Z, Simonetti FR, Bender AM, Kwon KJ, et al. (2019) A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. Nature.

11. Yu Q, Konig R, Pillai S, Chiles K, Kearney M, et al. (2004) Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nature Structural & Molecular Biology 11: 435–442.

12. de Verneuil A, Migraine J, Mammano F, Molina JM, Gallien S, et al. (2018) Genetically Intact but Functionally Impaired HIV-1 Env Glycoproteins in the T-Cell Reservoir. Journal of Virology 92.

13. Yukl SA, Kaiser P, Kim P, Telwatte S, Joshi SK, et al. (2018) HIV latency in isolated patient CD4(+) T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Science Translational Medicine 10.

14. Dieudonne M, Maiuri P, Biancotto C, Knezevich A, Kula A, et al. (2009) Transcriptional competence of the integrated HIV-1 provirus at the nuclear periphery. EMBO J 28: 2231–2243. doi: 10.1038/emboj.2009.141 19478796

15. Han Y, Lin YB, An W, Xu J, Yang HC, et al. (2008) Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 4: 134–146. doi: 10.1016/j.chom.2008.06.008 18692773

16. He G, Margolis DM (2002) Counterregulation of chromatin deacetylation and histone deacetylase occupancy at the integrated promoter of human immunodeficiency virus type 1 (HIV-1) by the HIV-1 repressor YY1 and HIV-1 activator Tat. Mol Cell Biol 22: 2965–2973. doi: 10.1128/MCB.22.9.2965-2973.2002 11940654

17. Lenasi T, Contreras X, Peterlin BM (2008) Transcriptional interference antagonizes proviral gene expression to promote HIV latency. Cell Host Microbe 4: 123–133. doi: 10.1016/j.chom.2008.05.016 18692772

18. Tyagi M, Karn J (2007) CBF-1 promotes transcriptional silencing during the establishment of HIV-1 latency. EMBO J 26: 4985–4995. doi: 10.1038/sj.emboj.7601928 18007589

19. Gallastegui E, Millan-Zambrano G, Terme JM, Chavez S, Jordan A (2011) Chromatin Reassembly Factors Are Involved in Transcriptional Interference Promoting HIV Latency. Journal of Virology 85: 3187–3202. doi: 10.1128/JVI.01920-10 21270164

20. Pollack RA, Jones RB, Pertea M, Bruner KM, Martin AR, et al. (2017) Defective HIV-1 Proviruses Are Expressed and Can Be Recognized by Cytotoxic T Lymphocytes, which Shape the Proviral Landscape. Cell Host & Microbe 21: 494–+.

21. Pinzone MR, VanBelzen DJ, Weissman S, Bertuccio MP, Cannon L, et al. (2019) Longitudinal HIV sequencing reveals reservoir expression leading to decay which is obscured by clonal expansion. Nat Commun 10: 728. doi: 10.1038/s41467-019-08431-7 30760706

22. Battivelli E, Dahabieh MS, Abdel-Mohsen M, Svensson JP, Da Silva IT, et al. (2018) Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4(+) T cells. Elife 7.

23. Chen HC, Martinez JP, Zorita E, Meyerhans A, Filion GJ (2017) Position effects influence HIV latency reversal. Nature Structural & Molecular Biology 24: 47–54.

24. Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. Embo Journal 22: 1868–1877. doi: 10.1093/emboj/cdg188 12682019

25. Lusic M, Giacca M (2015) Regulation of HIV-1 Latency by Chromatin Structure and Nuclear Architecture. Journal of Molecular Biology 427: 688–694. doi: 10.1016/j.jmb.2014.07.022 25073101

26. Li C, Mousseau G, Valente ST (2019) Tat inhibition by didehydro-Cortistatin A promotes heterochromatin formation at the HIV-1 long terminal repeat. Epigenetics Chromatin 12: 23. doi: 10.1186/s13072-019-0267-8 30992052

27. Daugaard M, Baude A, Fugger K, Povlsen LK, Beck H, et al. (2012) LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol 19: 803–810. doi: 10.1038/nsmb.2314 22773103

28. Nguyen K, Das B, Dobrowolski C, Karn J (2017) Multiple Histone Lysine Methyltransferases Are Required for the Establishment and Maintenance of HIV-1 Latency. Mbio 8.

29. Friedman J, Cho WK, Chu CK, Keedy KS, Archin NM, et al. (2011) Epigenetic Silencing of HIV-1 by the Histone H3 Lysine 27 Methyltransferase Enhancer of Zeste 2. Journal of Virology 85: 9078–9089. doi: 10.1128/JVI.00836-11 21715480

30. Taura M, Song E, Ho YC, Iwasaki A (2019) Apobec3A maintains HIV-1 latency through recruitment of epigenetic silencing machinery to the long terminal repeat. Proc Natl Acad Sci U S A 116: 2282–2289. doi: 10.1073/pnas.1819386116 30670656

31. du Chene I, Basyuk E, Lin YL, Triboulet R, Knezevich A, et al. (2007) Suv39H1 and HP1 gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. Embo Journal 26: 424–435. doi: 10.1038/sj.emboj.7601517 17245432

32. Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E (2009) Epigenetic Regulation of HIV-1 Latency by Cytosine Methylation. Plos Pathogens 5.

33. Kessing CF, Nixon CC, Li C, Tsai P, Takata H, et al. (2017) In Vivo Suppression of HIV Rebound by Didehydro-Cortistatin A, a "Block-and-Lock'' Strategy for HIV-1 Treatment. Cell Reports 21: 600–611. doi: 10.1016/j.celrep.2017.09.080 29045830

34. Pearson R, Kim YK, Hokello J, Lassen K, Friedman J, et al. (2008) Epigenetic Silencing of Human Immunodeficiency Virus (HIV) Transcription by Formation of Restrictive Chromatin Structures at the Viral Long Terminal Repeat Drives the Progressive Entry of HIV into Latency. Journal of Virology 82: 12291–12303. doi: 10.1128/JVI.01383-08 18829756

35. Tyagi M, Pearson RJ, Karn J (2010) Establishment of HIV Latency in Primary CD4(+) Cells Is due to Epigenetic Transcriptional Silencing and P-TEFb Restriction. Journal of Virology 84: 6425–6437. doi: 10.1128/JVI.01519-09 20410271

36. Tripathy MK, McManamy MEM, Burch BD, Archin NM, Margolis DM (2015) H3K27 Demethylation at the Proviral Promoter Sensitizes Latent HIV to the Effects of Vorinostat in Ex Vivo Cultures of Resting CD4(+) T Cells. Journal of Virology 89: 8392–8405. doi: 10.1128/JVI.00572-15 26041287

37. Bouchat S, Delacourt N, Kula A, Darcis G, Van Driessche B, et al. (2016) Sequential treatment with 5-aza-2-deoxycytidine and deacetylase inhibitors reactivates HIV-1. Embo Molecular Medicine 8: 117–138. doi: 10.15252/emmm.201505557 26681773

38. Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, et al. (2012) Dynamics and Memory of Heterochromatin in Living Cells. Cell 149: 1447–1460. doi: 10.1016/j.cell.2012.03.052 22704655

39. Matsuda Y, Kobayashi-Ishihara M, Fujikawa D, Ishida T, Watanabe T, et al. (2015) Epigenetic Heterogeneity in HIV-1 Latency Establishment. Scientific Reports 5.

40. Kao SY, Calman AF, Luciw PA, Peterlin BM (1987) Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature 330: 489–493. doi: 10.1038/330489a0 2825027

41. Berkhout B, Silverman RH, Jeang KT (1989) Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59: 273–282. doi: 10.1016/0092-8674(89)90289-4 2478293

42. Ishizaka A, Sato H, Nakamura H, Koga M, Kikuchi T, et al. (2016) Short Intracellular HIV-1 Transcripts as Biomarkers of Residual Immune Activation in Patients on Antiretroviral Therapy. J Virol 90: 5665–5676. doi: 10.1128/JVI.03158-15 27030274

43. Kaiser P, Joshi SK, Kim P, Li P, Liu H, et al. (2017) Assays for precise quantification of total (including short) and elongated HIV-1 transcripts. J Virol Methods 242: 1–8. doi: 10.1016/j.jviromet.2016.12.017 28034670

44. Lassen KG, Bailey JR, Siliciano RF (2004) Analysis of human immunodeficiency virus type 1 transcriptional elongation in resting CD4+ T cells in vivo. J Virol 78: 9105–9114. doi: 10.1128/JVI.78.17.9105-9114.2004 15308706

45. Moron-Lopez S, Kim P, Sogaard OS, Tolstrup M, Wong JK, et al. (2019) Characterization of the HIV-1 transcription profile after romidepsin administration in ART-suppressed individuals. AIDS 33: 425–431. doi: 10.1097/QAD.0000000000002083 30531314

46. Jiang GC, Mendes EA, Kaiser P, Sankaran-Walters S, Tang YY, et al. (2014) Reactivation of HIV latency by a newly modified Ingenol derivative via protein kinase C delta-NF-kappa B signaling. Aids 28: 1555–1566. doi: 10.1097/QAD.0000000000000289 24804860

47. Jiang GC, Mendes EA, Kaiser P, Wong DP, Tang YY, et al. (2015) Synergistic Reactivation of Latent HIV Expression by Ingenol-3-Angelate, PEP005, Targeted NF-kB Signaling in Combination with JQ1 Induced p-TEFb Activation. Plos Pathogens 11.

48. Jose DP, Bartholomeeusen K, da Cunha RD, Abreu CM, Glinski J, et al. (2014) Reactivation of latent HIV-1 by new semi-synthetic ingenol esters. Virology 462: 328–339. doi: 10.1016/j.virol.2014.05.033 25014309

49. Klase Z, Yedavalli VSRK, Houzet L, Perkins M, Maldarelli F, et al. (2014) Activation of HIV-1 from Latent Infection via Synergy of RUNX1 Inhibitor Ro5-3335 and SAHA. Plos Pathogens 10.

50. Massanella M, Gianella S, Lada SM, Richman DD, Strain MC (2015) Quantification of Total and 2-LTR (Long terminal repeat) HIV DNA, HIV RNA and Herpesvirus DNA in PBMCs. Bio Protoc 5: e1492. doi: 10.21769/bioprotoc.1492 27478862

51. Vicenti I, Meini G, Saladini F, Giannini A, Boccuto A, et al. (2017) Development of an internally controlled quantitative PCR to measure total cell-associated HIV-1 DNA in blood. Clinical Chemistry and Laboratory Medicine (CCLM) 56: e75–e77.

52. Sakane N, Kwon HS, Pagans S, Kaehlcke K, Mizusawa Y, et al. (2011) Activation of HIV Transcription by the Viral Tat Protein Requires a Demethylation Step Mediated by Lysine-specific Demethylase 1 (LSD1/KDM1). Plos Pathogens 7.

53. Kim M, Hosmane NN, Bullen CK, Capoferri A, Yang HC, et al. (2014) A primary CD4(+) T cell model of HIV-1 latency established after activation through the T cell receptor and subsequent return to quiescence. Nature Protocols 9: 2755–2770. doi: 10.1038/nprot.2014.188 25375990

54. Yang HC, Xing SF, Shan L, O'Connell K, Dinoso J, et al. (2009) Small-molecule screening using a human primary cell model of HIV latency identifies compounds that reverse latency without cellular activation. Journal of Clinical Investigation 119: 3473–3486. doi: 10.1172/JCI39199 19805909

55. Geller R, Domingo-Calap P, Cuevas JM, Rossolillo P, Negroni M, et al. (2015) The external domains of the HIV-1 envelope are a mutational cold spot. Nature Communications 6.

56. Vanlint C, Burny A, Verdin E (1991) The Intragenic Enhancer of Human-Immunodeficiency-Virus Type-1 Contains Functional Ap-1 Binding-Sites. Journal of Virology 65: 7066–7072. 1942259

57. Colin L, Vandenhoudt N, de Walque S, van Driessche B, Bergamaschi A, et al. (2011) The AP-1 Binding Sites Located in the pol Gene Intragenic Regulatory Region of HIV-1 Are Important for Viral Replication. Plos One 6.

58. Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, et al. (2017) Liquid droplet formation by HP1alpha suggests a role for phase separation in heterochromatin. Nature 547: 236–240. doi: 10.1038/nature22822 28636604

59. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, et al. (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proceedings of the National Academy of Sciences of the United States of America 107: 21931–21936. doi: 10.1073/pnas.1016071107 21106759

60. Zhang Z, Nikolai BC, Gates LA, Jung SY, Siwak EB, et al. (2017) Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency. Nucleic Acids Research 45: 9348–9360. doi: 10.1093/nar/gkx550 28637181

61. Raisner R, Kharbanda S, Jin L, Jeng E, Chan E, et al. (2018) Enhancer Activity Requires CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation. Cell Rep 24: 1722–1729. doi: 10.1016/j.celrep.2018.07.041 30110629

62. Romero FA, Murray J, Lai KW, Tsui V, Albrecht BK, et al. (2017) GNE-781, A Highly Advanced Potent and Selective Bromodomain Inhibitor of Cyclic Adenosine Monophosphate Response Element Binding Protein, Binding Protein (CBP). J Med Chem 60: 9162–9183. doi: 10.1021/acs.jmedchem.7b00796 28892380

63. Deng L, de la Fuente C, Fu P, Wang L, Donnelly R, et al. (2000) Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 277: 278–295. doi: 10.1006/viro.2000.0593 11080476

64. Kaehlcke K, Dorr A, Hetzer-Egger C, Kiermer V, Henklein P, et al. (2003) Acetylation of Tat defines a cyclinT1-independent step in HIV transactivation. Mol Cell 12: 167–176. doi: 10.1016/s1097-2765(03)00245-4 12887902

65. Stasevich TJ, Hayashi-Takanaka Y, Sato Y, Maehara K, Ohkawa Y, et al. (2014) Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516: 272–275. doi: 10.1038/nature13714 25252976

66. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J, et al. (2014) An atlas of active enhancers across human cell types and tissues. Nature 507: 455–461. doi: 10.1038/nature12787 24670763

67. Lucic B, Chen HC, Kuzman M, Zorita E, Wegner J, et al. (2018) Spatially clustered loci with multiple enhancers are frequent targets of HIV-1. BioRxiv.

68. Marban C, Suzanne S, Dequiedt F, de Walque S, Redel L, et al. (2007) Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. EMBO J 26: 412–423. doi: 10.1038/sj.emboj.7601516 17245431

69. Sadeghi L, Prasad P, Ekwall K, Cohen A, Svensson JP (2015) The Paf1 complex factors Leo1 and Paf1 promote local histone turnover to modulate chromatin states in fission yeast. Embo Reports 16: 1673–1687. doi: 10.15252/embr.201541214 26518661

70. Sadeghi L, Siggens L, Svensson JP, Ekwall K (2014) Centromeric histone H2B monoubiquitination promotes noncoding transcription and chromatin integrity. Nature Structural & Molecular Biology 21: 236–243.

71. Svensson JP, Shukla M, Menendez-Benito V, Norman-Axelsson U, Audergon P, et al. (2015) A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Research 25: 872–883. doi: 10.1101/gr.188870.114 25778913

72. Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, et al. (2019) Organization of Chromatin by Intrinsic and Regulated Phase Separation. Cell 179: 470–484. doi: 10.1016/j.cell.2019.08.037 31543265

73. Razooky BS, Pai A, Aull K, Rouzine IM, Weinberger LS (2015) A Hardwired HIV Latency Program. Cell 160: 990–1001. doi: 10.1016/j.cell.2015.02.009 25723172

74. Hansen MMK, Wen WY, Ingerman E, Razooky BS, Thompson CE, et al. (2018) A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization. Cell 173: 1609–1621. doi: 10.1016/j.cell.2018.04.005 29754821

75. Khan SZ, Hand N, Zeichner SL (2015) Apoptosis-induced activation of HIV-1 in latently infected cell lines. Retrovirology 12: 42. doi: 10.1186/s12977-015-0169-1 25980942

76. Hill AL, Rosenbloom DIS, Fu F, Nowak MA, Siliciano RF (2014) Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. Proceedings of the National Academy of Sciences of the United States of America 111: 13475–13480. doi: 10.1073/pnas.1406663111 25097264

77. Chiu A, Ayub M, Dive C, Brady G, Miller CJ (2017) twoddpcr: an R/Bioconductor package and Shiny app for Droplet Digital PCR analysis. Bioinformatics 33: 2743–2745. doi: 10.1093/bioinformatics/btx308 28475662


Článek vyšel v časopise

PLOS Pathogens


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 3/2024 (znalostní test z časopisu)
nový kurz

Kardiologické projevy hypereozinofilií
Autoři: prof. MUDr. Petr Němec, Ph.D.

Střevní příprava před kolonoskopií
Autoři: MUDr. Klára Kmochová, Ph.D.

Aktuální možnosti diagnostiky a léčby litiáz
Autoři: MUDr. Tomáš Ürge, PhD.

Závislosti moderní doby – digitální závislosti a hypnotika
Autoři: MUDr. Vladimír Kmoch

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#